揭开迷雾,来一顿美味的Capsule盛宴
By 苏剑林 | 2018-01-23 | 443495位读者 | 引用由深度学习先驱Hinton开源的Capsule论文《Dynamic Routing Between Capsules》,无疑是去年深度学习界最热点的消息之一。得益于各种媒体的各种吹捧,Capsule被冠以了各种神秘的色彩,诸如“抛弃了梯度下降”、“推倒深度学习重来”等字眼层出不穷,但也有人觉得Capsule不外乎是一个新的炒作概念。
本文试图揭开让人迷惘的云雾,领悟Capsule背后的原理和魅力,品尝这一顿Capsule盛宴。同时,笔者补做了一个自己设计的实验,这个实验能比原论文的实验更有力说明Capsule的确产生效果了。
菜谱一览:
1、Capsule是什么?
2、Capsule为什么要这样做?
3、Capsule真的好吗?
4、我觉得Capsule怎样?
5、若干小菜。
分享一个slide:花式自然语言处理
By 苏剑林 | 2018-01-23 | 83164位读者 | 引用《Attention is All You Need》浅读(简介+代码)
By 苏剑林 | 2018-01-06 | 883041位读者 | 引用2017年中,有两篇类似同时也是笔者非常欣赏的论文,分别是FaceBook的《Convolutional Sequence to Sequence Learning》和Google的《Attention is All You Need》,它们都算是Seq2Seq上的创新,本质上来说,都是抛弃了RNN结构来做Seq2Seq任务。
这篇博文中,笔者对《Attention is All You Need》做一点简单的分析。当然,这两篇论文本身就比较火,因此网上已经有很多解读了(不过很多解读都是直接翻译论文的,鲜有自己的理解),因此这里尽可能多自己的文字,尽量不重复网上各位大佬已经说过的内容。
序列编码
深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列。这样一来,每个句子都对应的是一个矩阵$\boldsymbol{X}=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_t)$,其中$\boldsymbol{x}_i$都代表着第$i$个词的词向量(行向量),维度为$d$维,故$\boldsymbol{X}\in \mathbb{R}^{n\times d}$。这样的话,问题就变成了编码这些序列了。
第一个基本的思路是RNN层,RNN的方案很简单,递归式进行:
\begin{equation}\boldsymbol{y}_t = f(\boldsymbol{y}_{t-1},\boldsymbol{x}_t)\end{equation}
不管是已经被广泛使用的LSTM、GRU还是最近的SRU,都并未脱离这个递归框架。RNN结构本身比较简单,也很适合序列建模,但RNN的明显缺点之一就是无法并行,因此速度较慢,这是递归的天然缺陷。另外我个人觉得RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程。
从loss的硬截断、软化到focal loss
By 苏剑林 | 2017-12-25 | 197463位读者 | 引用前言
今天在QQ群里的讨论中看到了focal loss,经搜索它是Kaiming大神团队在他们的论文《Focal Loss for Dense Object Detection》提出来的损失函数,利用它改善了图像物体检测的效果。不过我很少做图像任务,不怎么关心图像方面的应用。本质上讲,focal loss就是一个解决分类问题中类别不平衡、分类难度差异的一个loss,总之这个工作一片好评就是了。大家还可以看知乎的讨论:
《如何评价kaiming的Focal Loss for Dense Object Detection?》
看到这个loss,开始感觉很神奇,感觉大有用途。因为在NLP中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况。我尝试把它用在我的基于序列标注的问答模型中,也有微小提升。嗯,这的确是一个好loss。
接着我再仔细对比了一下,我发现这个loss跟我昨晚构思的一个loss具有异曲同工之理!这就促使我写这篇博文了。我将从我自己的思考角度出发,来分析这个问题,最后得到focal loss,也给出我昨晚得到的类似的loss。
训练集、验证集和测试集的意义
By 苏剑林 | 2017-10-14 | 50997位读者 | 引用基于fine tune的图像分类(百度分狗竞赛)
By 苏剑林 | 2017-10-13 | 28847位读者 | 引用前两年百度的大数据竞赛都是自然语言处理方面的,今年画风一转,变成了图像的细颗粒度分类,赛题内容就是将宠物狗归为100类中的其中一类。这个任务本身是很平凡的,做法也很常规,无外乎就是数据扩增、imagenet模型的fine tune、模型集成三个方面。笔者并不擅长于模型集成,只做了前面两个步骤,成绩也非常一般(准确率80%上下)。但感觉里边的某些代码可能对读者有帮助,遂共享一翻。下面结合着代码来讲解。
比赛官网(随时有失效的可能):http://js.baidu.com
模型
模型主要用tensorflow+keras实现。首先自然是导入各种模块
#! -*- coding:utf-8 -*-
import numpy as np
from scipy import misc
import tensorflow as tf
from keras.applications.xception import Xception,preprocess_input
from keras.layers import Input,Dense,Lambda,Embedding
from keras.layers.merge import multiply
from keras import backend as K
from keras.models import Model
from keras.optimizers import SGD
from tqdm import tqdm
import glob
np.random.seed(2017)
tf.set_random_seed(2017)
RNN模型中输入的重要性的评估
By 苏剑林 | 2017-09-10 | 30151位读者 | 引用Saliency Maps for RNN
RNN是很多序列任务的不二法门,比如文本分类任务的常用方法就是“词向量+LSTM+全连接分类器”。如下图
假如这样的一个模型可以良好地工作,那么现在考虑一个任务是:如何衡量输入$w_1,\dots,w_n$对最终的分类结果的影响的重要程度(Saliency)呢?例如假设这是一个情感分类任务,那么怎么找出是哪些词对最终的分类有较为重要的影响呢?本文给出了一个较为直接的思路。
思路的原理很简单,因为我们是将RNN最后一步的状态向量(也就是绿色阴影所代表的向量)传递给后面的分类器进行分类的,因此最后一步的状态向量$\boldsymbol{h}_n$就是一个目标向量。而RNN是一个递推的过程,
fashion mnist的一个baseline (MobileNet 95%)
By 苏剑林 | 2017-08-27 | 81235位读者 | 引用浅尝
昨天简单试了一下在fashion mnist的gan模型,发现还能work,当然那个尝试也没什么技术水平,就是把原来的脚本改一下路径跑了就完事。今天回到fashion mnist本身的主要任务——10分类,用Keras测了一下一些模型在上面的分类效果,最后得到了94.5%左右的准确率,加上随机翻转的数据扩增能做到95%。
首先随便手写了一些模型的组合,测试发现准确率都不大好,看来对于这个数据集来说,自己构思模型是比较困难的了,于是想着用现成的模型结构。一说到现成的cnn模型,基本上我们都会想到VGG、ResNet、inception、Xception等,但这些模型为解决imagenet的1000分类问题而设计,用到这个入门级别的数据集上似乎过于庞大了,而且也容易过拟合。后来突然想起,Keras好像自带了个叫MobileNet的模型,查看了一下模型权重,发现参数量不大,但是容量应该还是可以的,故选用MobileNet做实验。
最近评论