提速不掉点:基于词颗粒度的中文WoBERT
By 苏剑林 | 2020-09-18 | 109631位读者 | 引用当前,大部分中文预训练模型都是以字为基本单位的,也就是说中文语句会被拆分为一个个字。中文也有一些多颗粒度的语言模型,比如创新工场的ZEN和字节跳动的AMBERT,但这类模型的基本单位还是字,只不过想办法融合了词信息。目前以词为单位的中文预训练模型很少,据笔者所了解到就只有腾讯UER开源了一个以词为颗粒度的BERT模型,但实测效果并不好。
那么,纯粹以词为单位的中文预训练模型效果究竟如何呢?有没有它的存在价值呢?最近,我们预训练并开源了以词为单位的中文BERT模型,称之为WoBERT(Word-based BERT,我的BERT!),实验显示基于词的WoBERT在不少任务上有它独特的优势,比如速度明显的提升,同时效果基本不降甚至也有提升。在此对我们的工作做一个总结。
BERT可以上几年级了?Seq2Seq“硬刚”小学数学应用题
By 苏剑林 | 2020-10-19 | 67028位读者 | 引用“盈亏问题”、“年龄问题”、“植树问题”、“牛吃草问题”、“利润问题”...,小学阶段你是否曾被各种花样的数学应用题折磨过呢?没关系,现在机器学习模型也可以帮助我们去解答应用题了,来看看它可以上几年级了?
本文将给出一个求解小学数学应用题(Math Word Problem)的baseline,基于ape210k数据集训练,直接用Seq2Seq模型生成可执行的数学表达式,最终Large版本的模型能达到75%的准确率,明显高于ape210k论文所报告的结果。所谓“硬刚”,指的是没有对表达式做特别的转换,也没有通过模板处理,就直接生成跟人类做法相近的可读表达式。
TeaForN:让Teacher Forcing更有“远见”一些
By 苏剑林 | 2020-10-27 | 39647位读者 | 引用Teacher Forcing是Seq2Seq模型的经典训练方式,而Exposure Bias则是Teacher Forcing的经典缺陷,这对于搞文本生成的同学来说应该是耳熟能详的事实了。笔者之前也曾写过博文《Seq2Seq中Exposure Bias现象的浅析与对策》,初步地分析过Exposure Bias问题。
本文则介绍Google新提出的一种名为“TeaForN”的缓解Exposure Bias现象的方案,来自论文《TeaForN: Teacher-Forcing with N-grams》,它通过嵌套迭代的方式,让模型能提前预估到后$N$个token(而不仅仅是当前要预测的token),其处理思路上颇有可圈可点之处,值得我们学习。
(注:为了尽量跟本博客旧文章保持一致,本文的记号与原论文的记号有所不同,请大家以理解符号含义为主,不要强记符号形式。)
当GPT遇上中国象棋:写过文章解过题,要不再来下盘棋?
By 苏剑林 | 2020-11-11 | 52819位读者 | 引用不知道读者有没有看过量子位年初的文章《最强写作AI竟然学会象棋和作曲,语言模型跨界操作引热议,在线求战》,里边提到有网友用GPT2模型训练了一个下国际象棋的模型。笔者一直在想,这么有趣的事情怎么可以没有中文版呢?对于国际象棋来说,其中文版自然就是中国象棋了,于是我一直有想着把它的结果在中国象棋上面复现一下。拖了大半年,在最近几天终于把这个事情完成了,在此跟大家分享一下。
象棋谱式
将军不离九宫内,士止相随不出官。
象飞四方营四角,马行一步一尖冲。
炮须隔子打一子,车行直路任西东。
唯卒只能行一步,过河横进退无踪。
Performer:用随机投影将Attention的复杂度线性化
By 苏剑林 | 2020-12-01 | 81301位读者 | 引用Attention机制的$\mathcal{O}(n^2)$复杂度是一个老大难问题了,改变这一复杂度的思路主要有两种:一是走稀疏化的思路,比如我们以往介绍过的Sparse Attention以及Google前几个月搞出来的Big Bird,等等;二是走线性化的思路,这部分工作我们之前总结在《线性Attention的探索:Attention必须有个Softmax吗?》中,读者可以翻看一下。本文则介绍一项新的改进工作Performer,出自Google的文章《Rethinking Attention with Performers》,它的目标相当霸气:通过随机投影,在不损失精度的情况下,将Attention的复杂度线性化。
说直接点,就是理想情况下我们可以不用重新训练模型,输出结果也不会有明显变化,但是复杂度降到了$\mathcal{O}(n)$!看起来真的是“天上掉馅饼”般的改进了,真的有这么美好吗?
层次分解位置编码,让BERT可以处理超长文本
By 苏剑林 | 2020-12-04 | 118760位读者 | 引用大家都知道,目前的主流的BERT模型最多能处理512个token的文本。导致这一瓶颈的根本原因是BERT使用了从随机初始化训练出来的绝对位置编码,一般的最大位置设为了512,因此顶多只能处理512个token,多出来的部分就没有位置编码可用了。当然,还有一个重要的原因是Attention的$\mathcal{O}(n^2)$复杂度,导致长序列时显存用量大大增加,一般显卡也finetune不了。
本文主要面向前一个原因,即假设有足够多的显存前提下,如何简单修改当前最大长度为512的BERT模型,使得它可以直接处理更长的文本,主要思路是层次分解已经训练好的绝对位置编码,使得它可以延拓到更长的位置。
SPACES:“抽取-生成”式长文本摘要(法研杯总结)
By 苏剑林 | 2021-01-01 | 233210位读者 | 引用“法研杯”算是近年来比较知名的NLP赛事之一,今年是第三届,包含四个赛道,其中有一个“司法摘要”赛道引起了我们的兴趣。经过了解,这是面向法律领域裁判文书的长文本摘要生成,这应该是国内第一个公开的长文本生成任务和数据集。过去一年多以来,我们在文本生成方面都有持续的投入和探索,所以决定选择该赛道作为检验我们研究成果的“试金石”。很幸运,我们最终以微弱的优势获得了该赛道的第一名。在此,我们对我们的比赛模型做一个总结和分享。
在该比赛中,我们跳出了纯粹炼丹的过程,通过新型的Copy机制、Sparse Softmax等颇具通用性的新方法提升了模型的性能。整体而言,我们的模型比较简洁有效,而且可以做到端到端运行。窃以为我们的结果对工程和研究都有一定的参考价值。
【搜出来的文本】⋅(一)从文本生成到搜索采样
By 苏剑林 | 2021-01-07 | 61145位读者 | 引用最近,笔者入了一个新坑:基于离散优化的思想做一些文本生成任务。简单来说,就是把我们要生成文本的目标量化地写下来,构建一个分布,然后搜索这个分布的最大值点或者从这个分布中进行采样,这个过程通常不需要标签数据的训练。由于语言是离散的,因此梯度下降之类的连续函数优化方法不可用,并且由于这个分布通常没有容易采样的形式,直接采样也不可行,因此需要一些特别设计的采样算法,比如拒绝采样(Rejection Sampling)、MCMC(Markov Chain Monte Carlo)、MH采样(Metropolis-Hastings Sampling)、吉布斯采样(Gibbs Sampling),等等。
有些读者可能会觉得有些眼熟,似乎回到了让人头大的学习LDA(Latent Dirichlet Allocation)的那些年?没错,上述采样算法其实也是理解LDA模型的必备基础。本文我们就来回顾这些形形色色的采样算法,它们将会出现在后面要介绍的丰富的文本生成应用中。
最近评论