《量子力学与路径积分》习题解答V0.4
By 苏剑林 | 2016-01-09 | 32033位读者 | 引用《量子力学与路径积分》的习题解答终于艰难地推进到了0.4版本,目前已经基本完成了前7章的习题。
今天已经是2016年1月9号了,2015年已经远去,都忘记跟大家说一声新年快乐了,实在抱歉。在这里补充一句:祝大家新年快乐,事事如意!。
笔者已经大四了,现在是临近期末考,又临近毕业。最近忙的事情有很多,其中之一是我加入了一个互联网小公司的创业队伍中,负责文本挖掘,偶尔也写写爬虫,等等,感觉自己进去之后,增长了不少见识,也增加了不少技术知识,较之我上一次实习,又有不一样的高度。现在里边有好几样事情排队着做,可谓忙得不亦悦乎了。还有,我也开始写毕业论文了,早点写完能够多点时间,学学自己喜欢的东西,毕业论文我写的是路径积分相关的内容,自我感觉写得还是比较清楚易懂的,等时机成熟了,发出来,向大家普及路径积分^_^。此外,每天做点路径积分的习题,也要消耗不少时间,有些比较难的题目,基本一道就做几个早上才能写出比较满意的答案。总感觉想学的想做的事情有很多,可是时间很少。
【备忘】用树莓派3做无线路由器
By 苏剑林 | 2016-04-12 | 64899位读者 | 引用3月初发布的树莓派3自带了WiFi和蓝牙,再加上它本来就有一个网口,因此俨然就是一台无线路由器了。我也忍不住入手了一个,打算用来做路由器和NAS。树莓派做路由器的教程已经有很多了,当然,基本都是基于树莓派2的,3之前的版本都没有自带WiFi,因此需要自己配无线网卡,而3自带了无线网卡,配置就方便多了。参考了两篇外文教程,成功配置,在这里记录一下。
参考教程:
https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/
https://gist.github.com/Lewiscowles1986/fecd4de0b45b2029c390#file-rpi3-ap-setup-sh
路径积分系列:3.路径积分
By 苏剑林 | 2016-06-02 | 74022位读者 | 引用路径积分是量子力学的一种描述方法,源于物理学家费曼[5],它是一种泛函积分,它已经成为现代量子理论的主流形式. 近年来,研究人员对它的兴趣愈发增加,尤其是它在量子领域以外的应用,出现了一些著作,如[7]. 但在国内了解路径积分的人并不多,很多量子物理专业的学生可能并没有听说过路径积分.
从数学角度来看,路径积分是求偏微分方程的Green函数的一种方法. 我们知道,在偏微分方程的研究中,如果能够求出对应的Green函数,那么对偏微分方程的研究会大有帮助,而通常情况下Green函数并不容易求解. 但构建路径积分只需要无穷小时刻的Green函数,因此形式和概念上都相当简单.
本章并没有新的内容,只是做了一个尝试:从随机游走问题出发,给出路径积分的一个简明而直接的介绍,展示了如何将抛物型的偏微分方程问题转化为路径积分形式.
从点的概率到路径的概率
在上一章对随机游走的研究中,我们得出从$x_0$出发,$t$时间后,走到$x_n$处的概率密度为
$$\frac{1}{\sqrt{2\pi \alpha T}}\exp\left(-\frac{(x_n-x_0)^2}{2\alpha t}\right).\tag{22}$$
这是某时刻某点到另一个时刻另一点的概率,在数学上,我们称之为扩散方程$(21)$的传播子,或者Green函数.
路径积分系列:4.随机微分方程
By 苏剑林 | 2016-06-09 | 28942位读者 | 引用本章将路径积分用于随机微分方程,并且得到了与不对称随机游走一样的结果,从而证明了它与该模型的等价性.
将路径积分用于随机微分方程的研究,这一思路由来已久. 费曼在他的著作[5]中,已经建立了路径积分与线性随机微分方程的关系. 而对于非线性的情况,也有不少研究,但比较混乱,如文献[8]甚至给出了错误的结果.
本文从路径积分的离散化概念出发,明确地建立了两个路径积分微元的雅可比行列式关系,从而对非线性随机微分方程也建立了路径积分. 本文的结果跟文献[9]的结果是一致的.
概念
本文所研究的仅仅是随机常微分方程,它与一般的常微分方程的区别在于布朗运动项的引入,如常见的一类随机微分方程为
$$dx(t)=p(x(t),t)dt + \sqrt{\alpha} dW_t.\tag{48}$$
其中$W_t$代表着一个标准的布朗运动. 由于引入了随机项,所以解$x(t)$不再是确定的,而是有一定的概率分布.
在对随机微分方程中,感兴趣的量有很多,比如关于$x$的某个量的期望、方差,或者稳定性,等等. 随机微分方程领域中有各种分析的技巧,但是显然,直接求出$x(t)$的概率分布后对概率分布进行研究,是最理想最容易的方案. 路径积分正是给出了求概率分布的一个方法.
HSIC简介:一个有意思的判断相关性的思路
By 苏剑林 | 2019-08-26 | 99079位读者 | 引用前几天,在机器之心看到这样的一个推送《彻底解决梯度爆炸问题,新方法不用反向传播也能训练ResNet》,当然,媒体的标题党作风我们暂且无视,主要看内容即可。机器之心的这篇文章,介绍的是论文《The HSIC Bottleneck: Deep Learning without Back-Propagation》的成果,里边提出了一种通过HSIC Bottleneck来训练神经网络的算法。
坦白说,这篇论文笔者还没有看明白,因为对笔者来说里边的新概念有点多了。不过论文中的“HSIC”这个概念引起了笔者的兴趣。经过学习,终于基本地理解了这个HSIC的含义和来龙去脉,于是就有了本文,试图给出HSIC的一个尽可能通俗(但可能不严谨)的理解。
背景
HSIC全称“Hilbert-Schmidt independence criterion”,中文可以叫做“希尔伯特-施密特独立性指标”吧,跟互信息一样,它也可以用来衡量两个变量之间的独立性。
今天升级了Blog(欢迎大家来“顶”!)
By 苏剑林 | 2009-07-27 | 63494位读者 | 引用宇宙驿站服务器升级完毕
By 苏剑林 | 2014-01-19 | 31086位读者 | 引用2010年3D电视入客厅
By 苏剑林 | 2009-09-13 | 14964位读者 | 引用当你在看电视时,突然发现:英国100多年前的连环杀手——开膛手杰克,行凶时竟然没有出现在伦敦的黑暗角落,而是在你家的客厅;“飞人”博尔特脱离了比赛的赛道,犹如一阵风般在你的身边“飘”过;体型庞大的恐龙从远古时代复活,气势汹汹地向你迎面扑来……无论是现代的还是古代的,无论是人类还是动物,似乎都“耐不住寂寞”,统统“跑出”电视屏幕来。不过,不用怕,这只不过是3D电视的效果罢了。如今,随着技术的飞速发展,3D电视将有望最早在2010年进入家庭。
明年将开进家庭
据英国《每日邮报》等媒体报道,日前,索尼公司对外宣布,公司将会于2010年推出3D电视机。索尼首席执行官霍华德·斯特林格称,索尼不仅计划销售Bravia 3D电视机,还打算使索尼Vaio笔记本电脑、Playstation3游戏机和蓝光播放器兼容3D技术。斯特林格还表示:“3D正在向大众市场迈进。正如在数年前的高清技术面临的情况一样,如今的3D技术,尚且需要攻克很多的难关。不过,3D列车已在轨上,索尼已准备好把它开进家庭。”
最近评论