[备份]全国大学生数学建模竞赛论文LaTex模板
By 苏剑林 | 2014-09-11 | 40597位读者 | 引用生成函数法与整数的分拆
By 苏剑林 | 2014-09-16 | 31797位读者 | 引用我们在高中甚至初中,都有可能遇到这样的题目:
设$x,y,z$是非负整数,问$x+y+z=2014$有多少组不同的解?(不同顺序视为不同的解)
难度稍高点,可以改为
设$x,y,z$是非负整数,$0\leq x\leq y\leq z$,问$x+y+z=2014$有多少组不同的解?
这些问题都属于整数的分拆问题(广为流传的哥德巴赫猜想也是一个整数分拆问题)。有很多不同的思路可以求解这两道题,然而,个人认为这些方法中最引人入胜的(可能也是最有力的)首推“生成函数法”。
关于生成函数,本节就不多作介绍了,如果缺乏相关基础的朋友,请先阅读相关资料了解该方法。不少数论的、离散数学的、计算机科学的书籍中,都介绍了生成函数法(也叫母函数法)。本质上讲,母函数法能有诸多应用,是因为$x^a\times x^b=x^{a+b}$这一性质的成立。
怎么会这么巧!背后的隐藏信息
By 苏剑林 | 2015-01-21 | 36944位读者 | 引用假设我是一名中学数学老师,在给学生兴致勃勃地讲“素数”,讲完素数的定义和相关性质后,正当我接着往下讲时,有个捣蛋的学生提问,“老师,你能不能举一个三位数的素数?”。可是我手头上没有1000以内的素数表,我也没记住超过100的素数,那怎么办呢?我只好在黑板上写出几个三位数,比如173、211、463,然后跟学生说“让我们来检验这些数是不是素数”。最终的结果是:它们都是素数!然后会有学生疑问:怎么会这么巧?
素数的概率
首先的问题是,任意写一个三位数,它是素数的概率是多少?三位数的素数共有143个,三位数共有900个,于是概率应该是143/900,大约是六分之一。看起来挺低的,要“蒙中”似乎不容易。
集合上的一个等价关系决定了几何的一个划分,反之亦然,这直观上是不难理解的。但是,如果我要问一个有$n$个元素的有限集合,共有多少种不同的划分呢?以前感觉这也是一个很简单的问题,就没去细想,但前天抽象代数老师提到这是一个有相当难度的题目,于是研究了一下,发现里面大有文章。这里把我的研究过程简单分享一下,读者可以从中看到如何“从零到有”的过程。
以下假设有$n$个元素的有限集合为$\{1,2,\dots,n\}$,记它的划分数为$B(n)$。
前期:暴力计算
$n=3$的情况不难列出:
$$\begin{aligned}&\{\{1,2,3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\\
&\{\{2,3\},\{1\}\},\{\{1\},\{2\},\{3\}\}\end{aligned}$$
两百万素数之和与“电脑病”
By 苏剑林 | 2014-10-17 | 15752位读者 | 引用原则上来讲,同样的算法,如果分别在Python和C++上实现,那么Python的速度肯定比不上C++的。但是Python还被称为“胶水语言”,它允许我们把主要计算的部分用C或C++等高效的语言编写好,然后它作为“粘合剂”把两者粘合在一起。正因为如此,Python才有了各种各样的扩展库,这些库中有不少是用C语言编写的。因此,我们在编写Python程序的时候,如果可以用这些现成的库,速度会快很多。本文就是用Numpy来改进之前的《两百万前素数之和与前两百万素数之和》的计算。
算法本身是没有变的,只是用了Numpy来处理数组计算,代码如下:
从费马大定理谈起(十一):有理点与切割线法
By 苏剑林 | 2014-10-24 | 27131位读者 | 引用我们在这个系列的文章之中,探索了一些有关环和域的基本知识,并用整环以及唯一分解性定理证明了费马大定理在n=3和n=4时的情形。使用高斯整数环或者艾森斯坦整数环的相关知识,相对而言是属于近代的比较“高端”的代数内容(高斯生于1777年,艾森斯坦生于1823年,然而艾森斯坦英年早逝,只活到了1852年,高斯还活到了1855年。)。如果“顺利”的话,我们可以用这些“高端”的工具证明解的不存在性,或者求出通解(如果有解的话)。
然而,对于初等数论来讲,复数环和域的知识的门槛还是有点高了。其次,环和域是一个比较“强”的工具。这里的“强”有点“强势”的意味,是指这样的意思:如果它成功的话,它能够“一举破城”,把通解都求出来(或者证明解的不存在);如果它不成功的话,那么往往就连一点非平凡的解都求不出来。可是,有些问题是求出一部分解都已经很困难了,更不用说求出通解了(我们以后在研究$x^4+y^4 = z^4 + w^4 $的整数解的时候,就能深刻体会这点。)。因此,对于这些问题,单纯用环域的思想,很难给予我们(至少一部分)解。(当然,问题是如何才算是“单纯”,这也很难界定。这里的评论是比较粗糙的。)
变分自编码器(五):VAE + BN = 更好的VAE
By 苏剑林 | 2020-05-06 | 209452位读者 | 引用本文我们继续之前的变分自编码器系列,分析一下如何防止NLP中的VAE模型出现“KL散度消失(KL Vanishing)”现象。本文受到参考文献是ACL 2020的论文《A Batch Normalized Inference Network Keeps the KL Vanishing Away》的启发,并自行做了进一步的完善。
值得一提的是,本文最后得到的方案还是颇为简洁的——只需往编码输出加入BN(Batch Normalization),然后加个简单的scale——但确实很有效,因此值得正在研究相关问题的读者一试。同时,相关结论也适用于一般的VAE模型(包括CV的),如果按照笔者的看法,它甚至可以作为VAE模型的“标配”。
最后,要提醒读者这算是一篇VAE的进阶论文,所以请读者对VAE有一定了解后再来阅读本文。
VAE简单回顾
这里我们简单回顾一下VAE模型,并且讨论一下VAE在NLP中所遇到的困难。关于VAE的更详细介绍,请读者参考笔者的旧作《变分自编码器(一):原来是这么一回事》、《变分自编码器(二):从贝叶斯观点出发》等。
VAE的训练流程
VAE的训练流程大概可以图示为
从费马大定理谈起(十二):再谈谈切线法
By 苏剑林 | 2014-10-25 | 25909位读者 | 引用首先谈点题外话,关于本系列以及本博客的写作。其实本博客的写作内容,代表了笔者在这段时间附近的研究成果。也就是说,我此时在写这篇文章,其实表明我这段时间正在研究这个问题。而接下来的研究是否有结果,有怎样的结果,则是完全不知道的。所以,我在写这篇文章的时候,并不确定下一篇文章会写些什么。有些类似的话题,我会放在同一个系列去写。但不管怎样,这些文章可能并不遵循常规的教学或者学习思路,有些内容还可能与主流的思想方法有相当出入,请读者见谅,望大家继续支持!
上一篇我们谈到了切线法来求二次和三次曲线的有理点。切线法在寻找不高于三次的曲线上的有理点是很成功的,可是对于更高次的曲线有没有类似的方法呢?换句话说,有没有推广的可能性。我们从纯代数的角度来回复一下切线法生效的原因。切线法,更一般的是割线法,能够起作用,主要是因为如果有理系数的三次方程有两个有理数的根,那么第三个根肯定是有理数。如果只有一个已知的有理根,那么就可以让两个根重合为已知的那个根,从而割线变成了切线。
最近评论