变分自编码器(五):VAE + BN = 更好的VAE
By 苏剑林 | 2020-05-06 | 206343位读者 | 引用本文我们继续之前的变分自编码器系列,分析一下如何防止NLP中的VAE模型出现“KL散度消失(KL Vanishing)”现象。本文受到参考文献是ACL 2020的论文《A Batch Normalized Inference Network Keeps the KL Vanishing Away》的启发,并自行做了进一步的完善。
值得一提的是,本文最后得到的方案还是颇为简洁的——只需往编码输出加入BN(Batch Normalization),然后加个简单的scale——但确实很有效,因此值得正在研究相关问题的读者一试。同时,相关结论也适用于一般的VAE模型(包括CV的),如果按照笔者的看法,它甚至可以作为VAE模型的“标配”。
最后,要提醒读者这算是一篇VAE的进阶论文,所以请读者对VAE有一定了解后再来阅读本文。
VAE简单回顾
这里我们简单回顾一下VAE模型,并且讨论一下VAE在NLP中所遇到的困难。关于VAE的更详细介绍,请读者参考笔者的旧作《变分自编码器(一):原来是这么一回事》、《变分自编码器(二):从贝叶斯观点出发》等。
VAE的训练流程
VAE的训练流程大概可以图示为
简单的迅雷VIP账号获取器(Python)
By 苏剑林 | 2016-01-20 | 32575位读者 | 引用在Windows工作的时候,经常会用迅雷下载东西,如果速度慢或者没资源,尤其是一些比较冷门的视频,迅雷的VIP会员服务总能够帮上大忙。后来无意间发现了有个“迅雷VIP账号获取器”的软件,可以获取一些临时的VIP账号供使用,这可是个好东西,因为开通迅雷会员虽然不贵,但是我又不经常下载,所以老感觉有点浪费,而有了这个之后,我随时下点东西都可以免费用了。
最近转移到了Mac上,而Mac也有迅雷,但那个账号获取器是exe的,不能在Mac运行。本以为获取器的构造会很复杂,谁知道,经过抓包研究,发现那个账号获取器的原理极其简单,说白了,就是一个简单的爬虫,以下这两个网站提供账号,它就到相应的抓取账号而已:
http://yunbo.xinjipin.com/
http://www.fenxs.com
据此,我也用Python简单写了一个,主要是方便我在Mac使用。读者如果有需要,也可以下载使用,代码兼容2.x和3.x的版本。主要的库是requests和re,pandas和sys的使用只不过是为了更加人性化。本来想用Tkinter写一个简单的GUI的,但是想想看,还是没必要了~~
【备忘】用树莓派3做无线路由器
By 苏剑林 | 2016-04-12 | 66061位读者 | 引用3月初发布的树莓派3自带了WiFi和蓝牙,再加上它本来就有一个网口,因此俨然就是一台无线路由器了。我也忍不住入手了一个,打算用来做路由器和NAS。树莓派做路由器的教程已经有很多了,当然,基本都是基于树莓派2的,3之前的版本都没有自带WiFi,因此需要自己配无线网卡,而3自带了无线网卡,配置就方便多了。参考了两篇外文教程,成功配置,在这里记录一下。
参考教程:
https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/
https://gist.github.com/Lewiscowles1986/fecd4de0b45b2029c390#file-rpi3-ap-setup-sh
科学空间“微信群|聊天机器人”上线测试
By 苏剑林 | 2016-11-24 | 93937位读者 | 引用花了点时间,完成了一个微信的聊天机器人,并建立了微信群。
目前实现的功能如下:
1、搜索微信号spaces_ac_cn,添加为好友后,会自动给你发送加群邀请,你通过之后就可以加入到群聊中;
2、进群后自动发送欢迎信息;
3、记录群的聊天记录,定时分享给大家,以后大家就不担心有价值的群信息丢失了;
4、如果哪天群满了,则另开新群,一个群的信息,会自动同步到另外一个群,这样不至于冷落了某一个群;
5、如果你向微信号spaces_ac_cn发送消息,则自动在知乎搜索答案并返回,这还是一个简单的知乎搜索机器人。
还有一些管理员用到的功能,就不详细列出了。
欢迎大家加入!有问题请及时反馈,代码可能会有问题,因此希望大家多多测试。
SVD分解(一):自编码器与人工智能
By 苏剑林 | 2017-01-15 | 50802位读者 | 引用咋看上去,SVD分解是比较传统的数据挖掘手段,自编码器是深度学习中一个比较“先进”的概念,应该没啥交集才对。而本文则要说,如果不考虑激活函数,那么两者将是等价的。进一步的思考就可以发现,不管是SVD还是自编码器,我们降维,并不是纯粹地为了减少储存量或者减少计算量,而是“智能”的初步体现。
等价性
假设有一个$m$行$n$列的庞大矩阵$M_{m\times n}$,这可能使得计算甚至存储上都成问题,于是考虑一个分解,希望找到矩阵$A_{m\times k}$和$B_{k\times n}$,使得
$$M_{m\times n}=A_{m\times k}\times B_{k\times n}$$
这里的乘法是矩阵乘法。如图
基于CNN和VAE的作诗机器人:随机成诗
By 苏剑林 | 2018-03-24 | 126741位读者 | 引用前几日写了一篇VAE的通俗解读,也得到了一些读者的认可。然而,你是否厌倦了每次介绍都只有一个MNIST级别的demo?不要急,这就给大家带来一个更经典的VAE玩具:机器人作诗。
为什么说“更经典”呢?前一篇文章我们说过用VAE生成的图像相比GAN生成的图像会偏模糊,也就是在图像这一“仗”上,VAE是劣势。然而,在文本生成这一块上,VAE却漂亮地胜出了。这是因为GAN希望把判别器(度量)也直接训练出来,然而对于文本来说,这个度量很可能是离散的、不可导的,因此纯GAN就很难训练了。而VAE中没有这个步骤,它是通过重构输入来完成的,这个重构过程对于图像还是文本都可以进行。所以,文本生成这件事情,对于VAE来说它就跟图像生成一样,都是一个基本的、直接的应用;对于(目前的)GAN来说,却是艰难的象征,是它挥之不去的“心病”。
嗯,古有曹植七步作诗,今有VAE随机成诗,让我们开始吧~
模型
对于很多人来说,诗是一个很美妙的玩意,美妙之处在于大多数人都不真正懂得诗,但大家对诗的模样又有一知半解的认识。因此,只要生成的“诗”稍微像模像样一点,我们通常都会认为机器人可以作诗了。因此,所谓作诗机器人,是一个纯粹的玩具了,能作几句诗,也不意味着普通语言的生成能力有多好,也不意味着我们对NLP的理解有多深。
CNN + VAE
就本文的玩具而言,其实是一个比较简单的模型,主要是把一维CNN和VAE结合了起来。因为生成的诗长度是固定的,所以不管是encoder还是decoder,我都只是用了纯CNN来做。模型的结构图大概是:
变分自编码器(二):从贝叶斯观点出发
By 苏剑林 | 2018-03-28 | 471356位读者 | 引用源起
前几天写了博文《变分自编码器(一):原来是这么一回事》,从一种比较通俗的观点来理解变分自编码器(VAE),在那篇文章的视角中,VAE跟普通的自编码器差别不大,无非是多加了噪声并对噪声做了约束。然而,当初我想要弄懂VAE的初衷,是想看看究竟贝叶斯学派的概率图模型究竟是如何与深度学习结合来发挥作用的,如果仅仅是得到一个通俗的理解,那显然是不够的。
所以我对VAE继续思考了几天,试图用更一般的、概率化的语言来把VAE说清楚。事实上,这种思考也能回答通俗理解中无法解答的问题,比如重构损失用MSE好还是交叉熵好、重构损失和KL损失应该怎么平衡,等等。
建议在阅读《变分自编码器(一):原来是这么一回事》后对本文进行阅读,本文在内容上尽量不与前文重复。
准备
在进入对VAE的描述之前,我觉得有必要把一些概念性的内容讲一下。
变分自编码器(三):这样做为什么能成?
By 苏剑林 | 2018-04-03 | 191314位读者 | 引用话说我觉得我自己最近写文章都喜欢长篇大论了,而且扎堆地来~之前连续写了三篇关于Capsule的介绍,这次轮到VAE了,本文是VAE的第三篇探索,说不准还会有第四篇~不管怎么样,数量不重要,重要的是能把问题都想清楚。尤其是对于VAE这种新奇的建模思维来说,更加值得细细地抠。
这次我们要关心的一个问题是:VAE为什么能成?
估计看VAE的读者都会经历这么几个阶段。第一个阶段是刚读了VAE的介绍,然后云里雾里的,感觉像自编码器又不像自编码器的,反复啃了几遍文字并看了源码之后才知道大概是怎么回事;第二个阶段就是在第一个阶段的基础上,再去细读VAE的原理,诸如隐变量模型、KL散度、变分推断等等,细细看下去,发现虽然折腾来折腾去,最终居然都能看明白了。
这时候读者可能就进入第三个阶段了。在这个阶段中,我们会有诸多疑问,尤其是可行性的疑问:“为什么它这样反复折腾,最终出来模型是可行的?我也有很多想法呀,为什么我的想法就不行?”
前文之要
让我们再不厌其烦地回顾一下前面关于VAE的一些原理。
VAE希望通过隐变量分解来描述数据$X$的分布
$$p(x)=\int p(x|z)p(z)dz,\quad p(x,z) = p(x|z)p(z)\tag{1}$$
最近评论