8 Feb

地球扁率的简单推导

假如没有自转,单凭物质之间的引力作用,天体应该都会呈现一个很完美(不是绝对完美)的球形。不过绝大多数的天体都存在着自转,因此他们的赤道半径都比极半径长。BoJone粗糙地考虑了一下在引力和惯性离心力的共同作用下,天体所呈现的形状,并与太阳系的一些天体进行对比,发现还是能够吻合到一定程度。现在此和大家分享,供读者参考。

地球扁率推导

地球扁率推导

点击阅读全文...

28 May

科学空间:2011年6月重要天象

月全食-201106160340

月全食-201106160340

6月中下旬,是北半球一年中黑夜最短的时期。今年6月22日是夏至节气,以北纬40°地区为例,当天天文昏影终到次日天文晨光始的间隔只有不到4小时50分钟。黑夜短暂会使我们可用于天文观测的时间缩短。但在夏至前后,午夜时分太阳也会在地平线下不太低的位置,这样我们就有可能整夜观测到一些类似国际空间站这样的低轨道人造天体。有兴趣的朋友可以查询相关的过境预报,挑战在一晚可以观测到多少次国际空间站过境这类的观测项目。发生在六月的日偏食和月全食,是今年天象的重头戏。接下来笔者就日偏食讲起,跟大家聊聊发生在6月的天象。

点击阅读全文...

26 Feb

有限Vs无限:无穷电荷板的场|平行板电容

学过高中物理的同学都会知道,在经典力学和静电学理论中,万有引力和库仑力有着类似的性质,它们都与距离平方成反比。现在我从引力角度向大家提出一个问题:

一块密度均匀的无限大的平面板,它所产生的引力场是否均匀的?也就是说,板外任意一点的等质量物体受到的引力是否相同?

对于静电力也可以提出类似的问题,只要把引力换成库仑力,把质量换成电荷即可。只要类比有限的情况,我们就会得出结论:场一定是不均匀的!因为力与距离平方成反比,距离不同,受力就不等。果真如此吗?

点击阅读全文...

5 Mar

科学空间:2011年3月重要天象

几颗经典行星,将成为3月星空剧场的主角。其中难得一见的水星将迎来一次观测条件很好的东大距,而到了下旬,土星也几乎整夜可见。随着落下时间的逐渐提前,木星的观测条件正逐渐变差。作为晨星的金星升起的时间也正不断推迟,我们将越来越难观测到它的身影。

天象大观

01日 11:40 金星合月: 1.7° S
11日 12:35 月合昴宿星团: 1.8° N
16日 04:16 水星合木星: 2° N
21日 07:21 春分
21日 19:00 月合角宿一: 2.5° N
21日 19:54 天王星合日
23日 08:59 水星大距: 18.6° E
31日 21:25 金星合月: 6.6° S

点击阅读全文...

8 Mar

沐浴问题——调控水温

载入正题之前,不妨闲扯一下BoJone的家...

BoJone在一些文章中已经提到过,我是一个来自农村的孩子,目前我的家也在农村。虽然生活并不能说“贫困”,家中也添置了不少电器,不过一直没有购置的就是洗衣机和热水器。洗衣机嘛,我觉得衣服自己动手洗是很好的,至少不让自己偷懒。至于热水器,因为家在农村,所以能够比较方便地弄到一些柴草,而且稻谷收割完后的桔梗也可以当燃料用,平时烧菜一般都用烧柴草,因此热水器实在没有多大必要。(很遗憾,沼气池没有能够在这里普及起来,大家可不要责怪我排放温室气体哦...^_^)

烧柴草的炉灶

烧柴草的炉灶

既然没有热水器,那只能人工烧水了。往往是烧好一大锅水,洗澡时盛一盆子,然后加水降温,接着就可以洗白白了。本文的问题正是来源于调水温。当水很热时,为了加快降温,我们往往“双管齐下”:一边向盆子注入冷水,一般从盆子放出热水。于是就有了一个问题:水的温度与时间成什么关系?

点击阅读全文...

12 Mar

历史上的谜案——刘徽有没有使用外推法?

刘徽

刘徽

话说当年我国古代数学家刘徽创立“割圆术”计算圆周率的事迹,在今天已被不少学生知晓;虽不能说家喻户晓,但是也为各教科书以及老师津津乐道。和古希腊的“数学之神”阿基米德同出一辙,刘徽也是使用圆的内接、外切正多边形来逼近圆形的;不一样的是,刘徽使用的方法是计算半径为1的圆的内接、外切正多边形的面积,而阿基米德计算的则是直径为1的圆的内接、外切正多边形的周长。两者的计算效果有什么区别呢?其实阿基米德的方法应该更快一点,阿基米德算到正n边形所得到的值,相当于刘徽算到正2n边形了。

在此我们不再对两者的计算方法进行区分,因为两者的本质都是一样的。按照现代数学的写法,“割圆术”的理论依据是
$$lim_{n\to \infty} n \sin(\frac{\pi}{n})=\pi\tag{1}$$
当然,刘徽不可能有现代计算正弦函数值的公式(现在计算正弦函数值一般用泰勒级数展开,而泰勒级数展开需要用到$\pi$的值),甚至在他那个时代就连笔墨也没有,据我所知即使是后来的祖冲之推算圆周率时,唯一的计算工具也只是现在称为“算筹”的小棍。不过刘徽还是凭借着超强的毅力,利用递推的方法逐步求圆周率。

点击阅读全文...

4 Apr

科学空间:2011年4月重要天象

4月,将一脚踏入春天,我们头顶的天象剧场也将再次变得热闹起来,火星合月、天琴座流星雨等天象都非常值得期待,在阳春4月,让我们仰望星空,一起来感受头顶的精彩吧。

天象大观

01日 金星距太阳: 35.2° W
04日 07:18 土星冲日
06日 23:06 木星 合日
07日 18:19 月合昴宿星团: 2.1° N
10日 03:25 水星 下合日 .
18日 06:04 月合角宿一: 2.5° N
20日 02:12 水星合火星: 0.6° N
23日 06:44 天琴座流星雨: ZHR = 20

点击阅读全文...

5 Apr

重提“旋转弹簧伸长”问题(变分解法)

感谢Awank-Newton读者的来信,本文于2013.01.30作了修正,主要是弹性势能的正负号问题。之前连续犯了两个错误,导致得出了正确答案。现在已经修正。参考《平衡态公理的修正与思考》

在下面的两篇文章中,BoJone已经介绍了这个“旋转弹簧伸长”的问题,并从两个角度提供了两种解答方法。前者列出了一道积分方程,然后再转变为微分方程来解;后者直接从弹性力学的角度来列出一道二阶微分方程,两者殊途同归。
http://kexue.fm/archives/782/

http://kexue.fm/archives/826/

今天,再经过一段时间的变分法涉猎后,BoJone尝试从变分的角度(总能量最小)来给出一种新的解法。同样设r为旋转达到平衡后弹簧上一点到旋转中心的距离,该点的线密度为$\lambda =\lambda (r)$,该点到中心的弹簧质量为$m=m(r)$,旋转前的长度为$l_0$,旋转平衡后的长度为$l_1$。由于弹簧旋转后已经达到了平衡状态,由平衡态公理(参看《自然极值》系列),平衡意味着总能量“动能-势能”取极值。

点击阅读全文...