17 Aug

【中文分词系列】 1. 基于AC自动机的快速分词

前言:这个暑假花了不少时间在中文分词和语言模型上面,碰了无数次壁,也得到了零星收获。打算写一个专题,分享一下心得体会。虽说是专题,但仅仅是一些笔记式的集合,并非系统的教程,请读者见谅。

中文分词

关于中文分词的介绍和重要性,我就不多说了,matrix67这里有一篇关于分词和分词算法很清晰的介绍,值得一读。在文本挖掘中,虽然已经有不少文章探索了不分词的处理方法,如本博客的《文本情感分类(三):分词 OR 不分词》,但在一般场合都会将分词作为文本挖掘的第一步,因此,一个有效的分词算法是很重要的。当然,中文分词作为第一步,已经被探索很久了,目前做的很多工作,都是总结性质的,最多是微弱的改进,并不会有很大的变化了。

目前中文分词主要有两种思路:查词典字标注。首先,查词典的方法有:机械的最大匹配法、最少词数法,以及基于有向无环图的最大概率组合,还有基于语言模型的最大概率组合,等等。查词典的方法简单高效(得益于动态规划的思想),尤其是结合了语言模型的最大概率法,能够很好地解决歧义问题,但对于中文分词一大难度——未登录词(中文分词有两大难度:歧义和未登录词),则无法解决;为此,人们也提出了基于字标注的思路,所谓字标注,就是通过几个标记(比如4标注的是:single,单字成词;begin,多字词的开头;middle,三字以上词语的中间部分;end,多字词的结尾),把句子的正确分词法表示出来。这是一个序列(输入句子)到序列(标记序列)的过程,能够较好地解决未登录词的问题,但速度较慢,而且对于已经有了完备词典的场景下,字标注的分词效果可能也不如查词典方法。总之,各有优缺点(似乎是废话~),实际使用可能会结合两者,像结巴分词,用的是有向无环图的最大概率组合,而对于连续的单字,则使用字标注的HMM模型来识别。

点击阅读全文...

1 Jul

从Boosting学习到神经网络:看山是山?

前段时间在潮州给韩师的同学讲文本挖掘之余,涉猎到了Boosting学习算法,并且做了一番头脑风暴,最后把Boosting学习算法的一些本质特征思考清楚了,而且得到一些意外的结果,比如说AdaBoost算法的一些理论证明也可以用来解释神经网络模型这么强大。

AdaBoost算法

Boosting学习,属于组合模型的范畴,当然,与其说它是一个算法,倒不如说是一种解决问题的思路。以有监督的分类问题为例,它说的是可以把弱的分类器(只要准确率严格大于随机分类器)通过某种方式组合起来,就可以得到一个很优秀的分类器(理论上准确率可以100%)。AdaBoost算法是Boosting算法的一个例子,由Schapire在1996年提出,它构造了一种Boosting学习的明确的方案,并且从理论上给出了关于错误率的证明。

以二分类问题为例子,假设我们有一批样本$\{x_i,y_i\},i=1,2,\dots,n$,其中$x_i$是样本数据,有可能是多维度的输入,$y_i\in\{1,-1\}$为样本标签,这里用1和-1来描述样本标签而不是之前惯用的1和0,只是为了后面证明上的方便,没有什么特殊的含义。接着假设我们已经有了一个弱分类器$G(x)$,比如逻辑回归、SVM、决策树等,对分类器的唯一要求是它的准确率要严格大于随机(在二分类问题中就是要严格大于0.5),所谓严格大于,就是存在一个大于0的常数$\epsilon$,每次的准确率都不低于$\frac{1}{2}+\epsilon$

点击阅读全文...

22 Aug

【中文分词系列】 4. 基于双向LSTM的seq2seq字标注

关于字标注法

上一篇文章谈到了分词的字标注法。要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了。在我看来,字标注法有效有两个主要的原因,第一个原因是它将分词问题变成了一个序列标注问题,而且这个标注是对齐的,也就是输入的字跟输出的标签是一一对应的,这在序列标注中是一个比较成熟的问题;第二个原因是这个标注法实际上已经是一个总结语义规律的过程,以4tag标注为为例,我们知道,“李”字是常用的姓氏,一半作为多字词(人名)的首字,即标记为b;而“想”由于“理想”之类的词语,也有比较高的比例标记为e,这样一来,要是“李想”两字放在一起时,即便原来词表没有“李想”一词,我们也能正确输出be,也就是识别出“李想”为一个词,也正是因为这个原因,即便是常被视为最不精确的HMM模型也能起到不错的效果。

关于标注,还有一个值得讨论的内容,就是标注的数目。常用的是4tag,事实上还有6tag和2tag,而标记分词结果最简单的方法应该是2tag,即标记“切分/不切分”就够了,但效果不好。为什么反而更多数目的tag效果更好呢?因为更多的tag实际上更全面概括了语义规律。比如,用4tag标注,我们能总结出哪些字单字成词、哪些字经常用作开头、哪些字用作末尾,但仅仅用2tag,就只能总结出哪些字经常用作开头,从归纳的角度来看,是不够全面的。但6tag跟4tag比较呢?我觉得不一定更好,6tag的意思是还要总结出哪些字作第二字、第三字,但这个总结角度是不是对的?我觉得,似乎并没有哪些字固定用于第二字或者第三字的,这个规律的总结性比首字和末字的规律弱多了(不过从新词发现的角度来看,6tag更容易发现长词。)。

双向LSTM

点击阅读全文...

19 Aug

【中文分词系列】 3. 字标注法与HMM模型

在这篇文章中,我们暂停查词典方法的介绍,转而介绍字标注的方法。前面已经提到过,字标注是通过给句子中每个字打上标签的思路来进行分词,比如之前提到过的,通过4标签来进行标注(single,单字成词;begin,多字词的开头;middle,三字以上词语的中间部分;end,多字词的结尾。均只取第一个字母。),这样,“为人民服务”就可以标注为“sbebe”了。4标注不是唯一的标注方式,类似地还有6标注,理论上来说,标注越多会越精细,理论上来说效果也越好,但标注太多也可能存在样本不足的问题,一般常用的就是4标注和6标注。

值得一提的是,这种通过给每个字打标签、进而将问题转化为序列到序列的学习,不仅仅是一种分词方法,还是一种解决大量自然语言问题的思路,比如命名实体识别等任务,同样可以用标注的方法来做。回到分词来,通过字标注法来进行分词的模型有隐马尔科夫模型(HMM)、最大熵模型(ME)、条件随机场模型(CRF),它们在精度上都是递增的,据说目前公开评测中分词效果最好的是4标注的CRF。然而,在本文中,我们要讲解的是最不精确的HMM。因为在我看来,它并非一个特定的模型,而是解决一大类问题的通用思想,一种简化问题的学问。

这一切,还得从概率模型谈起。

点击阅读全文...

6 Sep

基于双向LSTM和迁移学习的seq2seq核心实体识别

暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下。模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值。

比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别。这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起。如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的思路(如TF-IDF抽取)是行不通的,因为单句中的核心实体可能就只出现一次,这时候统计估计是不可靠的,最好能够从语义的角度来理解。我一开始就是从“核心识别”入手,使用的方法类似QA系统:

1、将句子分词,然后用Word2Vec训练词向量;

2、用卷积神经网络(在这种抽取式问题上,CNN效果往往比RNN要好)卷积一下,得到一个与词向量维度一样的输出;

3、损失函数就是输出向量跟训练样本的核心词向量的cos值。

点击阅读全文...

16 Oct

【理解黎曼几何】4. 联络和协变导数

向量与联络

当我们在我们的位置建立起自己的坐标系后,我们就可以做很多测量,测量的结果可能是一个标量,比如温度、质量,这些量不管你用什么坐标系,它都是一样的。当然,有时候我们会测量向量,比如速度、加速度、力等,这些量都是客观实体,但因为测量结果是用坐标的分量表示的,所以如果换一个坐标,它的分量就完全不一样了。

假如所有的位置都使用同样的坐标,那自然就没有什么争议了,然而我们前面已经反复强调,不同位置的人可能出于各种原因,使用了不同的坐标系,因此,当我们写出一个向量$A^{\mu}$时,严格来讲应该还要注明是在$\boldsymbol{x}$位置测量的:$A^{\mu}(\boldsymbol{x})$,只有不引起歧义的情况下,我们才能省略它。

到这里,我们已经能够进行一些计算,比如$A^{\mu}$是在$\boldsymbol{x}$处测量的,而$\boldsymbol{x}$处的模长计算公式为$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$,因此,$A^{\mu}$的模长为$\sqrt{g_{\mu\nu} A^{\mu}A^{\nu}}$,它是一个客观实体。

如图,可以在球面上每一点建立不同的局部坐标系,至少这些坐标系的竖直方向的轴指向是不一样的。

如图,可以在球面上每一点建立不同的局部坐标系,至少这些坐标系的竖直方向的轴指向是不一样的。

点击阅读全文...

12 Sep

【中文分词系列】 5. 基于语言模型的无监督分词

迄今为止,前四篇文章已经介绍了分词的若干思路,其中有基于最大概率的查词典方法、基于HMM或LSTM的字标注方法等。这些都是已有的研究方法了,笔者所做的就只是总结工作而已。查词典方法和字标注各有各的好处,我一直在想,能不能给出一种只需要大规模语料来训练的无监督分词模型呢?也就是说,怎么切分,应该是由语料来决定的,跟语言本身没关系。说白了,只要足够多语料,就可以告诉我们怎么分词。

看上去很完美,可是怎么做到呢?《2.基于切分的新词发现》中提供了一种思路,但是不够彻底。那里居于切分的新词发现方法确实可以看成一种无监督分词思路,它就是用一个简单的凝固度来判断某处该不该切分。但从分词的角度来看,这样的分词系统未免太过粗糙了。因此,我一直想着怎么提高这个精度,前期得到了一些有意义的结果,但都没有得到一个完整的理论。而最近正好把这个思路补全了。因为没有查找到类似的工作,所以这算是笔者在分词方面的一点原创工作了。

语言模型

首先简单谈一下语言模型。

点击阅读全文...

15 Oct

【理解黎曼几何】3. 测地线

测地线

黎曼度量应该是不难理解的,在微分几何的教材中,我们就已经学习过曲面的“第一基本形式”了,事实上两者是同样的东西,只不过看待问题的角度不同,微分几何是把曲面看成是三维空间中的二维子集,而黎曼几何则是从二维曲面本身内蕴地研究几何问题。

几何关心什么问题呢?事实上,几何关心的是与变换无关的“客观实体”(或者说是在变换之下不变的东西),这也是几何的定义。根据Klein提出的《埃尔朗根纲领》,几何就是研究在某种变换(群)下的不变性质的学科。如果把变换局限为刚性变换(平移、旋转、反射),那么就是欧式几何;如果变换为一般的线性变换,那就是仿射几何。而黎曼几何关心的是与一切坐标都无关的客观实体。比如说,我有一个向量,方向和大小都确定了,在直角坐标系是$(1, 1)$,在极坐标系是$(\sqrt{2}, \pi/4)$,虽然两个坐标系下的分量不同,但它们都是指代同一个向量。也就是说向量本身是客观存在的实体,跟所使用的坐标无关。从代数层面看,就是只要能够通过某种坐标变换相互得到的,我们就认为它们是同一个东西。

因此,在学习黎曼几何时,往“客观实体”方向思考,总是有益的。

平面上的测地线

平面上的测地线

有了度规,可以很自然地引入“测地线”这一实体。狭义来看,它就是两点间的最短线——是平直空间的直线段概念的推广(实际的测地线不一定是最短的,但我们先不纠结细节,而且这不妨碍我们理解它,因为测地线至少是局部最短的)。不难想到,只要两点确定了,那么不管使用什么坐标,两点间的最短线就已经确定了,因此这显然是一个客观实体。有一个简单的类比,就是不管怎么坐标变换,一个函数$f(x)$的图像极值点总是确定的——不管你变还是不变,它就在那儿,不偏不倚。

点击阅读全文...