19 Sep

Softmax后传:寻找Top-K的光滑近似

Softmax,顾名思义是“soft的max”,是$\max$算子(准确来说是$\text{argmax}$)的光滑近似,它通过指数归一化将任意向量$\boldsymbol{x}\in\mathbb{R}^n$转化为分量非负且和为1的新向量,并允许我们通过温度参数来调节它与$\text{argmax}$(的one hot形式)的近似程度。除了指数归一化外,我们此前在《通向概率分布之路:盘点Softmax及其替代品》也介绍过其他一些能实现相同效果的方案。

我们知道,最大值通常又称Top-1,它的光滑近似方案看起来已经相当成熟,那读者有没有思考过,一般的Top-$k$的光滑近似又是怎么样的呢?下面让我们一起来探讨一下这个问题。

问题描述

设向量$\boldsymbol{x}=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$,简单起见我们假设它们两两不相等,即$i\neq j \Leftrightarrow x_i\neq x_j$。记$\Omega_k(\boldsymbol{x})$为$\boldsymbol{x}$最大的$k$个分量的下标集合,即$|\Omega_k(\boldsymbol{x})|=k$以及$\forall i\in \Omega_k(\boldsymbol{x}), j \not\in \Omega_k(\boldsymbol{x})\Rightarrow x_i > x_j$。我们定义Top-$k$算子$\mathcal{T}_k$为$\mathbb{R}^n\mapsto\{0,1\}^n$的映射:
\begin{equation}
[\mathcal{T}_k(\boldsymbol{x})]_i = \left\{\begin{aligned}1,\,\, i\in \Omega_k(\boldsymbol{x}) \\ 0,\,\, i \not\in \Omega_k(\boldsymbol{x})\end{aligned}\right.
\end{equation}
说白了,如果$x_i$属于最大的$k$个元素之一,那么对应的位置变成1,否则变成0,最终结果是一个Multi-Hot向量,比如$\mathcal{T}_2([3,2,1,4]) = [1,0,0,1]$。

点击阅读全文...

11 Aug

广东珠海之旅(图片)

一直呆在老家,很少出去到外面,这个暑假到了珠海玩了一下。
珠海离我们很近,坐车,3小时左右的路程(大约209公里)。不过也把我们累得,这是我目前来说走得最远的路程。

落脚点为“翠微香山花园”:

图片说明:香山花园,不过GE的图片已经很久了,现在已经有很大变化了

图片说明:香山花园,不过GE的图片已经很久了,现在已经有很大变化了

随后,到了一些地方游玩:地下商场、渔女、圆明新园......

点击阅读全文...

20 Sep

正十七边形的尺规作图存在之证明

在网上查找到的,好像有三个不同的版本,全部摘录在此。

关于正17边形的尺规作图方法,请看:
http://kexue.fm/article.asp?id=104

本文章只是证明它的存在(就是求出$\cos ({2\pi}/{17})$)。

点击阅读全文...

6 Oct

中国香港“光纤之父”获2009诺贝尔物理学奖!

中国网10月6日电,据诺贝尔基金会官方网站报道,瑞典皇家科学院诺贝尔奖委员会宣布,将2009年度诺贝尔物理学奖授予一名中国香港科学家高琨(Charles K. Kao)和两名美国科学家博伊尔(Willard S. Boyle)乔治-E-史密斯(George E. Smith)。科学家Charles K. Kao 因为“在光学通信领域中光的传输的开创性成就” 而获奖,科学家因博伊尔和乔治-E-史密斯因“发明了成像半导体电路——电荷藕合器件图像传感器CCD” 获此殊荣。

2009年诺贝尔物理学奖获得者高锟、博伊尔和史密斯(从左至右)

2009年诺贝尔物理学奖获得者高锟、博伊尔和史密斯(从左至右)

2009年诺贝尔物理学奖获得者高锟、博伊尔和史密斯(从左至右)

点击阅读全文...

25 Oct

电影《宇宙之旅》(IMAX Cosmic Voyage)

上了高中,在校园,我的最大梦想就是普及科学,让科学流行起来!所以,我竭力争取一切能够进行科普的机会。如搞天文社、办科学课堂等等,无奈的是只有我一个人真正对科学感兴趣、对科学有一定了解,所以在这条道路上我孤军作战。尽管如此,我还是努力着,我不会放弃!我相信,有一天,科学一定会流行起来,就像NBA一样!

《宇宙之旅》

《宇宙之旅》

这个星期,我们准备组织一节科普电影课。上网找了一些科学电影,最后目光集中到了这一部《IMAX Cosmic Voyage》——《宇宙之旅》。

点击阅读全文...

18 Apr

【奥赛之行】非同一般的天文奥赛

文章已经刊登在《天文爱好者》杂志2010年第四期
这是BoJone的第一篇铅字文章!Yeah!
PS:在今年的全国天文奥赛中,BoJone无比地幸运进入了决赛名单。五月中旬,我们将会与众多的天文爱好者相约固原,BoJone期待着...

非同一般的天文奥赛

非同一般的天文奥赛

点击阅读全文...

22 Sep

记IOAA之旅

经历了这十天的IOAA之旅,在不觉间,我仿佛完成了一次蜕变,一次人生的蜕变。仅以下面的这些简陋的文字,表达我这些天的经历与感受。

09.12---出发

广东--北京

广东--北京

点击阅读全文...

13 Jan

混沌的世界——“星之轨迹”的研究

(本文已被刊登在2012年1月的《天文爱好者》上,于笔者而言这是一份很棒的新年礼物!)

《天爱》杂志页面.JPG

在去年第七期《天爱》上,我们看到了N体问题所呈现出来的一些对称、漂亮的周期轨道,这体现了N体问题和谐有序的一面。但是这仅仅是N体问题的冰山一角,笔者也提到过N体问题的本质是混沌、无序的,通俗来讲就是非常乱,无法用数学方程来精确描述。这看起来是一种不完美。但试想,探索当初伽利略将望远镜对准月球后,看到的是如想象中光滑的月面,那么他还会惊叹宇宙的神奇吗?

本文就让我们来更深入地了解一下N体问题的研究历史。

观测&拟合时代

由于人类的自我优越感以及日月星辰东升西落的经验,让我们长期都认为地球是宇宙的中心。第一个比较系统提出地心说的人当属天文学家欧多克斯(Eudoxus,死于公元前347年左右),但他的地心说是非常粗糙的,以至于无法解释很多基本现象,如无法准确预言日食和解释行星逆行等。但亚里士多德接受了地心说,并且由于他在政治和科学上的权威,使地心说免去了夭折的命运。后来托勒密通过他的本轮,完善了地心说,使之延续到了16世纪。

点击阅读全文...