12 Feb

2012北约自主招生数学

其中前六题是选择题,具体情况记不起来了,其实也是挺简单的。不过有兴趣的朋友可以在本文的PDF附件查阅到试题(来自“空念远兮”数学网站)。

对了这个PDF文件的参考答案之后,BoJone发现我的选择题全对。而后三道大题我只做了最后两道,解法也和PDF中的不大一样,在此写出来与大家讨论。

1、求证:内角相等的圆内接五边形是正五边形。

这道题是我在最后十五分钟做出来的。一开始想到很多复杂的定理方法,后来发现它可以很简单证明。

如图是一个满足题目条件的五边形。

五边形

五边形

点击阅读全文...

4 Mar

我的自主招生成绩公布了

北大这次也太不够朋友了,华约、卓越的成绩昨天就已经出来了,北大的今天才查到(不知道它是昨晚公布还是今天早上公布的),着急等待了一整天。千呼万唤,总算出来了。

很遗憾地告诉大家,就目前的情况来看,北大自招是没戏了。271的总分,很难被通过...

自主招生 成绩

自主招生 成绩

点击阅读全文...

12 Mar

宇宙驿站十岁啦

科学空间是2009年3月建立的,虽然其中经历了一些变动,但是从2009年下半年开始,科学空间就一直在“宇宙驿站”的怀抱之中健康成长着。今天,科学空间即将三岁了(03.16视为科学空间建立的日子),而宇宙驿站则已经十岁了。

在宇宙驿站中,崔博等许许多多人做出了不懈努力,为我们这些科学爱好者提供者免费而优越的服务,BoJone对此有无限的感激之情。与宇宙驿站有种相见恨晚的感觉,不过虽然没有经历建立之初那激动人心的时刻,但是,既然已经和驿站一起、和各位读者一起走了这么久了,就应该一直走下去。

谨此留念

By 崔辰州博士:

十年前的今天,2002年3月12日,在国家天文台LAMOST三楼的小机房里一台从中关村电子市场淘来的电脑对外开始了她的职业生涯,这就是最初的宇宙驿站。

点击阅读全文...

18 Mar

指数函数及其展开式孰大孰小?

在x>0时,指数函数$f(x)=e^x$与幂函数$h_n (x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}$孰大孰小?

对于已经学习了微积分的朋友来说,这道题目是很简单的,甚至$f(x) > h_n (x)$可以说是“显然成立的”(因为$e^x$展开式接下来的无穷项都是正数)。但是,这道题目出在了2012年的广州一模理科数学中,就显得不那么简单了,得用初等的方法来证明它。而笔者最近养成了一个习惯,拿到一张数学试卷,不是先做选择题,而是先做最后一题。所以在参加广州一模时,先花了半个小时把最后一题(即本题)解决了。下面是我想到的三种解法。

一、数学归纳法

点击阅读全文...

14 Jan

诡异的Dirac函数

量子力学中有一个很诡异的函数——Dirac函数,它似乎在物理的不少领域都有很大作用,它也具有明显的物理意义,但认真地看它却又感觉它根本就不是函数!这个“似而非是”的东西究竟是什么呢?让我们从一个物理问题引入:

设想一条质量为1,长度为$2l$的均匀直线,很显然直线的密度为$\rho=\frac{1}{2l}$;将直线的中点放置于坐标轴的原点,我们就有
$$\rho(x)=\left\{ \begin{array}{c}\frac{1}{2l} (-l \leq x \leq l)\\0 (x < -l , x > l)\end{array}\right.$$

所以有
$$\int_{-\infty}^{+\infty} \rho(x)dx=1$$

点击阅读全文...

23 May

高考倒计时15天...

偷空上来写写心情^_^

还有15天

还有15天

点击阅读全文...

10 Jun

费曼积分法——积分符号内取微分(1)

帅气的天才科学家费曼

帅气的天才科学家费曼

似乎有好久都没有写文章感觉,高考结束了,继续研究。先总结一下考前的一些结果。

这个文章讲的是一个叫“积分符号内取微分”东西,这是一个很有趣而且有用的求定积分的方法。在这里我又擅自把它叫做“费曼积分法”,因为我是从费曼的自传《别闹了,费曼先生》中看到这种方法的。当然,费曼不是这个方法的首创者,他仅仅是是喜欢、熟练这种方法,并将它记载在了自传中。具体情况是怎样的呢?我先不多说,请读者直接看《别闹了,费曼先生》中的情节。

点击阅读全文...

12 Jun

费曼积分法——积分符号内取微分(2)

上一篇文章我对“费曼积分法”做了一个简单的介绍,并通过举例来初步展示了它的操作步骤。但是,要了解一个方法,除了知道它能够干什么之外,还必须了解它的原理和方法,这样我们才能够更好地掌握它。因此,我们需要建立“积分符号内取微分”的一般理论,为进一步的应用奠基。

一般原理

我们记
$$G(a)=\int_{m(a)}^{n(a)} f(x,a)dx$$

在这里,f(x,a)是带有参数a的关于x的函数,而积分区间是关于参数a的两个函数,这样的积分也叫变限积分,可以理解为是普通定积分的推广。我们记F(x,a)为f(x,a)的原函数,也就是说$\frac{\partial F(x,a)}{\partial x}=f(x,a)$,那么按照微积分基本定理,我们就有:
$$G(a)=F(n(a),a)-F(m(a),a)$$

点击阅读全文...