19 Oct

【理解黎曼几何】6. 曲率的计数与计算(Python)

曲率的独立分量

黎曼曲率张量是一个非常重要的张量,当且仅当它全部分量为0时,空间才是平直的。它也出现在爱因斯坦的场方程中。总而言之,只要涉及到黎曼几何,黎曼曲率张量就必然是核心内容。

已经看到,黎曼曲率张量有4个指标,这也意味着它有$n^4$个分量,$n$是空间的维数。那么在2、3、4维空间中,它就有16、81、256个分量了,可见,要计算它,是一件相当痛苦的事情。幸好,这个张量有很多的对称性质,使得独立分量的数目大大减少,我们来分析这一点。

首先我们来导出黎曼曲率张量的一些对称性质,这部分内容是跟经典教科书是一致的。定义
$$R_{\mu\alpha\beta\gamma}=g_{\mu\nu}R^{\nu}_{\alpha\beta\gamma} \tag{50} $$
定义这个量的原因,要谈及逆变张量和协变张量的区别,我们这里主要关心几何观,因此略过对张量的详细分析。这个量被称为完全协变的黎曼曲率张量,有时候也直接叫做黎曼曲率张量,只要不至于混淆,一般不做区分。通过略微冗长的代数运算(在一般的微分几何、黎曼几何或者广义相对论教材中都有),可以得到
$$\begin{aligned}&R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}\\
&R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}\\
&R_{\mu\alpha\beta\gamma}=R_{\beta\gamma\mu\alpha}\\
&R_{\mu\alpha\beta\gamma}+R_{\mu\beta\gamma\alpha}+R_{\mu\gamma\alpha\beta}=0
\end{aligned} \tag{51} $$

点击阅读全文...

28 Oct

在Python中使用GMP(gmpy2)

之前笔者曾写过《初试在Python中使用PARI/GP》,简单介绍了一下在Python中调用PARI/GP的方法。PARI/GP是一个比较强大的数论库,“针对数论中的快速计算(大数分解,代数数论,椭圆曲线...)而设计”,它既可以被C/C++或Python之类的编程语言调用,而且它本身又是一种自成一体的脚本语言。而如果仅仅需要高精度的大数运算功能,那么GMP似乎更满足我们的需求。

了解C/C++的读者都会知道GMP(全称是GNU Multiple Precision Arithmetic Library,即GNU高精度算术运算库),它是一个开源的高精度运算库,其中不但有普通的整数、实数、浮点数的高精度运算,还有随机数生成,尤其是提供了非常完备的数论中的运算接口,比如Miller-Rabin素数测试算法、大素数生成、欧几里德算法、求域中元素的逆、Jacobi符号、legendre符号等[来源]。虽然在C/C++中调用GMP并不算复杂,但是如果能在以高开发效率著称的Python中使用GMP,那么无疑是一件快事。这正是本文要说的gmpy2

点击阅读全文...

19 Dec

【备忘】Python中断多重循环的几种思路

跳出单循环

不管是什么编程语言,都有可能会有跳出循环的需求,比如枚举时,找到一个满足条件的数就终止。跳出单循环是很简单的,比如

for i in range(10):
    if i > 5:
        print i
        break

然而,我们有时候会需要跳出多重循环,而break只能够跳出一层循环,比如

for i in range(10):
    for j in range(10):
        if i+j > 5:
            print i,j
            break

这样的代码并非说找到一组i+j > 5就停止,而是连续找到10组,因为break只跳出了for j in range(10)这一重循环。那么,怎么才能跳出多重呢?在此记录备忘一下。

点击阅读全文...

22 Jul

初试在Python中使用PARI/GP

BoJone很喜欢Python,也很喜欢数论,所以就喜欢利用Python玩数论了。平时也喜欢自己动手写一些数论函数,毕竟Python支持大整数高精度运算,这点是非常好的;但是,在很多实际应用中,还是希望能有一个现成的数论函数库来调用。之前尝试过数学研发网的HugeCalc库,但是由于各种不熟悉不了了之。后来论坛上的无心老兄推荐了PARI/GP,小试一下,居然在Python上成功调用了。以后再也不用担心Python上的数论计算问题了,呵呵~

点击阅读全文...

13 Aug

两个惊艳的python库:tqdm和retry

Python基本是我目前工作、计算、数据挖掘的唯一编程语言(除了符号计算用Mathematica外)。当然,基本的Python功能并不是很强大,但它胜在有巨量的第三方扩展库。在选用Python的第三方库时,我都会经过仔细考虑,希望能挑选出最简单的、最直观的一个(因为本人比较笨,太复杂用不了)。在数据处理方面,我用得最多的是Numpy和Pandas,这两个绝对称得上王者级别的库,当然不能不提的是Scipy,但我很少直接用它,一般会通过Pandas间接调用了;可视化方面不用说是Matplotlib了;在建模方面,我会用Keras,直接上深度学习模型,Keras已经成为相当流行的深度学习框架了,如果做文本挖掘,通常还会用到jieba(分词)、Gensim(主题建模,包含了诸如word2vec之类的模型),机器学习库还有流行的Scikit Learn,但我很少用;网络方面,写爬虫我用requests,这是个人性化的网络库,如果写网站,我会用bottle,这是个单文件版的迷你框架,一切由自己定义,当然,我也不会去写什么大型网站,我就写一个简单的的接口那样而已;最后如果要并行的话,一般直接用multiprocessing。

不过,以上都不是本文要推荐的,本文要推荐的是两个可以渗透到日常写代码的库,它实现了我们平时很多时候都需要的功能,但是不用增加什么代码,绝对让人眼前一亮。

点击阅读全文...

11 Jun

用PyPy提高Python脚本执行效率

《两百万前素数之和与前两百万素数之和》中,我们用Python求了前两百万的素数和以及两百万前的素数和,并且得到了在Python 3.3中的执行时间如下:

两百万前的素数之和:
142913828922
time: 2.4048174478605646

前两百万的素数之和:
31381137530481
time: 46.75734807838953

于是想办法提高python脚本的执行效率,我觉得在算法方面,优化空间已经比较小了,于是考虑执行器上的优化。在搜索的无意间我看到了一个名词——Psyco!这是python的一个外部模块,导入后可以加快.py脚本的执行。网上也有《用 Psyco 让 Python 运行得像 C一样快》、《利用 psyco 让 Python 程序执行更快》之类的文章,说明Psyco确实是一个可行的选择,于是就跃跃欲试了,后来了解到Psyco在2012年已经停止开发,只支持到Python 2.4版本,目前它由 PyPy所接替。于是我就下载了PyPy

点击阅读全文...

7 Oct

班门弄斧:Python的代码能有多简洁?

此文很水,高手略过...

Python以它的开发效率而闻名,优秀的开发效率自然意味着它能够用更少的代码实现更多的功能。那么,对于同一个问题,Python的代码能有多简洁?而我们怎么平衡开发效率和运行效率?笔者学了几个月Python,略懂一点,在此班门弄斧一翻。

在此,我们来编程计算
$$\sum_{n=0}^{10} n^2$$
这当然是一道非常简单的习题。按照一般思路,写出来的最自然的代码就是:

s=0
for i in range(11):
    s = s + i**2

print(s)

点击阅读全文...

15 Dec

两生物种群竞争模型:LaTeX+Python

写在前面:本文是笔者数学建模课的作业,探讨了两生物种群竞争的常微分方程组模型的解的性质,展示了微分方程定性理论的基本思想。当然,本文最重要的目的,是展示LaTeX与Python的完美结合。(本文的图均由Python的Matplotlib模块生成;而文档则采用LaTeX编辑。)

问题提出

研究在同一个自然环境中生存的两个种群之间的竞争关系。假设两个种群独自在这个自然环境中生存时数量演变都服从Logistic规律,又假设当它们相互竞争时都会减慢对方数量的增长,增长速度的减小都与它们数量的乘积成正比。按照这样的假设建立的常微分方程模型为
$$\begin{equation}\label{eq:jingzhengfangcheng}\left\{\begin{aligned}\frac{dx_1}{dt}=r_1 x_1\left(1-\frac{x_1}{N_1}\right)-a_1 x_1 x_2 \\
\frac{dx_2}{dt}=r_2 x_2\left(1-\frac{x_2}{N_2}\right)-a_2 x_1 x_2\end{aligned}\right.\end{equation}$$
本文分别通过定量和定性两个角度来分析该方程的性质。

点击阅读全文...