6 Jan

借助变分法变换坐标

ODE的坐标变换

熟悉理论力学的读者应该能够领略到变分法在变换坐标系中的作用。比如,如果要将下面的平面二体问题方程
$$\left\{\begin{aligned}\frac{d^2 x}{dt^t}=\frac{-\mu x}{(x^2+y^2)^{3/2}}\\
\frac{d^2 y}{dt^t}=\frac{-\mu y}{(x^2+y^2)^{3/2}}\end{aligned}\right.\tag{1}$$
变换到极坐标系下,如果直接代入计算,将会是一道十分繁琐的计算题。但是,我们知道,上述方程只不过是作用量
$$S=\int \left[\frac{1}{2}\left(\dot{x}^2+\dot{y}^2\right)+\frac{\mu}{\sqrt{x^2+y^2}}\right]dt\tag{2}$$
变分之后的拉格朗日方程,那么我们就可以直接对作用量进行坐标变换。而由于作用量一般只涉及到了一阶导数,因此作用量的变换一般来说比较简单。比如,很容易写出,$(2)$在极坐标下的形式为
$$S=\int \left[\frac{1}{2}\left(\dot{r}^2+r^2\dot{\theta}^2\right)+\frac{\mu}{r}\right]dt\tag{3}$$
对$(3)$进行变分,得到的拉格朗日方程为
$$\left\{\begin{aligned}&\ddot{r}=r\dot{\theta}^2-\frac{\mu}{r^2}\\
&\frac{d}{dt}\left(r^2\dot{\theta}\right)=0\end{aligned}\right.\tag{4}$$
就这样完成了坐标系的变换。如果想直接代入$(1)$暴力计算,那么请参考《方程与宇宙》:二体问题的来来去去(一)

点击阅读全文...

31 Dec

我的写论文软件组合

思维导图

思维导图

这学期的数学建模课,对笔者来说,基本上就是一个锻炼论文写作和Python技能的过程。不过是写论文还是写博客,我都致力于写出符合自己审美观的作品,因此我才会选择$\LaTeX$,我才会选择Python。$\LaTeX$写出来的科学论文是公认的标准而好看的格式,而Python,的确可以作出漂亮的图,也可以简洁地完成所需要的数值计算。我越来越发现,在数学建模、写作方面,除了必不可少的符号推导部分(这部分只能用Mathematica),我已经离不开Python了。

为什么还要求漂亮?内容好不就行了吗?的确,内容才是主要的,但是如果能把展示效果美化一下,而且又不耗费更多的功夫,那么何乐而不为呢?

点击阅读全文...

13 Jan

当概率遇上复变:从二项分布到泊松分布

泊松分布,适合于描述单位时间内随机事件发生的次数的概率分布,如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数等。[维基百科]泊松分布也可以作为小概率的二项分布的近似,其推导过程在一般的概率论教材都会讲到。可是一般教材上给出的证明并不是那么让人赏心悦目,如《概率论与数理统计教程》(第二版,茆诗松等编)的第98页就给出的证明过程。那么,哪个证明过程才更让人点赞呢?我认为是利用母函数的证明。

二项分布的母函数为
$$\begin{equation}(q+px)^n,\quad q=1-p\end{equation}$$

点击阅读全文...

20 Jan

有限素域上的乘法群是循环群

对于任意的素数$p$,集合$\mathbb{Z}_p=\{0,1,2,\dots,p-1\}$在模$p$的加法和乘法之下,构成一个域,这是学过抽象代数或者初等数论的读者都会知道的一个事实。其中,根据域的定义,$\mathbb{Z}_p$首先要在模$p$的加法下成为一个交换群,而且由于$\mathbb{Z}_p$的特殊性,它还是一个循环群,这也是比较平凡的事实。但是,考虑乘法呢?

首先,$0$是没有逆元的,我们考虑乘法,是在$\mathbb{Z}^\cdot _p=\mathbb{Z}_p \verb|\| \{0\}=\{1,2,\dots,p-1\}$上考虑的。如果我说,$\mathbb{Z}^\cdot _p$在模$p$之下的乘法也作成一个循环群,这结论就不是很平凡的了!然而这确实是事实,对于所有的素数$p$均成立。而有了这事实,数论中的一些结论就会相当显然了,比如当$d\mid (p-1)$时,$\mathbb{Z}_p$中的$d$次剩余就只有$\frac{p-1}{d}$个了,这是循环群的基本结论。

在《数学天书中的证明》一书中,有该结论的一个证明,但这个证明是存在性的,而我在另外一本书上也看到过类似的存在性证明,也就是说,似乎流行的证明都是存在性的,它告诉我们$\mathbb{Z}^\cdot _p$是一个循环群,但是没告诉我们怎么找到它的生成元。而事实上,高斯在他的《算术探索》中就给出了一个构造性的证明。(在数论中,本文的结论是“原根”那一章的基本知识。)下面笔者正是要重复高斯的证明,供读者参考。

点击阅读全文...

14 Feb

高斯型积分的微扰展开(一)

前段时间在研究费曼的路径积分理论,看到路径积分的微扰方法,也就是通过小参数展开的方式逐步逼近传播子。这样的技巧具有非常清晰的物理意义,有兴趣了解路径积分以及量子力学的读者,请去阅读费曼的《量子力学与路径积分》。然而从数学角度看来,这种逼近的技巧实际上非常粗糙,收敛范围和速度难以得到保证。事实上,数学上发展了各种各样的摄动技巧,来应对不同情况的微扰。下面我们研究积分
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\tag{1}$$
或者更一般地
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon V(x)} dx\tag{2}$$
路径积分的级数展开比它稍微复杂一些,但是仍然是类似的形式。

点击阅读全文...

28 Mar

有趣的求极限题:随心所欲的放缩

昨天一好友问我以下题目,求证:
$$\lim_{n\to\infty} \frac{1^n + 2^n +\dots + n^n}{n^n}=\frac{e}{e-1}$$
将解答过程简单记录一下。

求解

首先可以注意到,当$n$充分大时,
$$\frac{1^n + 2^n +\dots + n^n}{n^n}=\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n$$
的主要项都集中在最后面那几项,因此,可以把它倒过来计算
$$\begin{aligned}\frac{1^n + 2^n +\dots + n^n}{n^n}=&\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n\\
=&\left(\frac{n}{n}\right)^n+\dots+\left(\frac{2}{n}\right)^n+\left(\frac{1}{n}\right)^n\end{aligned}$$

点击阅读全文...

27 Mar

海伦公式的一个别致的物理推导

海伦公式是已知三角形三边的长度$a,b,c$来求面积$S$的公式,是一个相当漂亮的公式,它不算复杂,同时它关于$a,b,c$是对称的,充分体现了三边的同等地位。可是,这样具有对称美的公式推导,往往要经过一个不对称的过程,比如维基百科上的证明,这未免有点美中不足。本文的目的,就是想为此补充一个对称的推导。本文题目为“物理推导”,关键在于“推导”而不是“证明”,同时这里的“物理”并非是通过物理类比而来,而是推导的思想和方法很具有“物理味道”。

$$\sqrt{p(p-a)(p-b)(p-c)}$$

在推导开始之前,笔者给出一个评论:海伦公式似乎是由三边长求三角形面积的所有可能的公式之中最简单的一个。

点击阅读全文...

27 Feb

从Knotsevich在黑板上写的级数题目谈起

某天在浏览高教社的“i数学”编辑的微博时候,发现上面有一道Knotsevich在黑板上写的他认为很有意思的题目,原始网址是:http://weibo.com/3271276117/BBrL5foVz

Knotsevich在黑板上写的级数题目

Knotsevich在黑板上写的级数题目

题目是这样的
$$\sum_{n=0}^{\infty} \frac{n! (20n)!}{(4n)!(7n)!(10n)!}x^n\tag{1}$$
大概的目的是找出原函数的表达式吧。

点击阅读全文...