3 Apr

我19岁了

生日祝福

生日祝福

2012年3月28日,我19岁了。

三月是一个很美的月份,我的很多值得纪念的日子都在三月发生,还有好友们都在三月接二连三地生日,几乎让我措手不及了,呵呵。我的同桌黄金,好友家益,我的好妹妹凤儿还有我自己都在这个月成为十九岁的孩子了。算起来,我应该是“最年轻”的了^_^

3-25-聚餐合照

3-25-聚餐合照

我的生日收到了许多人的祝福,这让我觉得很意外,我一直觉得,我不善于人际交往,所以不应该会有太多人关注我,但惊喜在我身上发生了。谢谢大家。(除了凤儿之外,因为我们俩说过永远不互说谢谢)

人生如梦,繁星流动,和你同路,从不相识开始心接近,默默以真挚待人......这是《朋友》的歌词,也是我们之间的真实写照。感谢上天,让我的人生之路上有你们的相伴,人生因为你们而更加精彩。愿能够与你们一起度过、奋斗过更多的日子!我们相约,我们是一辈子的朋友!

点击阅读全文...

30 Apr

引力透镜——用经典力学推导光的偏转公式

引力透镜
————用经典力学推导光的引力偏转角公式

引力透镜效应造成的爱因斯坦十字

引力透镜效应造成的爱因斯坦十字

在2012年第四期的《天文爱好者》上,Richard de Grijs(何锐思)教授的《引力透镜——再领科学潮》一文详细而精彩地讲述了有关引力透镜方面的知识,尤其是它在天文方面的重要应用,让我收获颇丰。笔者在赞叹作者优美的文笔和译者程思浩同好的生动翻译之余,也感到了一丝不足。文章主要讲了引力透镜在天文研究中所扮演的重要角色,却未对引力透镜的原理、本质方面多加描述。时空的扭曲是广义相对论给出的答案,可是难道仅仅从经典力学就不能领略丝毫?藉此,BoJone这在里对引力透镜多说些东西,与大家相互学习研究。当然,由于我只是一个初出茅庐的业余爱好者,其中的不当之处还望各位斧正。

点击阅读全文...

1 May

相对论、对称和第四维

这篇文章其实在年初就完成了。

众所周知,我们生活在一个平坦的世界中。正如我们能够感受到的那样,在这个被称为“欧几里得平直空间”的世界里,空间里两点间的最短曲线是两点间的直线段,空间里的任意直角三角形都满足勾股定理,每个物体都有着自己的长、宽、高,它们都随着时间的流逝而运动着。这种世界观把时间独立于空间之外,作为一个独特的研究对象。但是自爱因斯坦在1905年发表狭义相对论以来,我们的宇宙就被描述成为了由三维空间和一维时间组成的“四维时空”,在这里,时间和空间的地位是等价的。不少同好们也许会感到非常困惑:即使证明了时间与空间的确存在着某种联系,也不必要把时间描述成是世界的一维吧?在我们的感官里,时间明明就和空间的三维差别甚大,时间和空间怎么能够等同起来呢?其实答案很简单:为了美。把时间看成与空间等价的一维之后,整个力学体系体现出一种前所未有的对称美,这种美不仅让人赏心悦目,而且极大地方便了我们进一步处理问题。

对称

点击阅读全文...

14 Jan

诡异的Dirac函数

量子力学中有一个很诡异的函数——Dirac函数,它似乎在物理的不少领域都有很大作用,它也具有明显的物理意义,但认真地看它却又感觉它根本就不是函数!这个“似而非是”的东西究竟是什么呢?让我们从一个物理问题引入:

设想一条质量为1,长度为$2l$的均匀直线,很显然直线的密度为$\rho=\frac{1}{2l}$;将直线的中点放置于坐标轴的原点,我们就有
$$\rho(x)=\left\{ \begin{array}{c}\frac{1}{2l} (-l \leq x \leq l)\\0 (x < -l , x > l)\end{array}\right.$$

所以有
$$\int_{-\infty}^{+\infty} \rho(x)dx=1$$

点击阅读全文...

23 May

高考倒计时15天...

偷空上来写写心情^_^

还有15天

还有15天

点击阅读全文...

9 Jun

高考结束了

轻轻地,它来了;悄悄地,它走了。似乎不带来一点东西,也没有留下一点痕迹,除了那珍贵的回忆。

仰望天空

仰望天空

06月07日、08日,两个一直以来于我而言都很神秘而神圣的日子,在前天、昨天和他们相遇了。一切来得那么不知不觉,似乎只有一瞬间,那传说中一个人生的转折点便过去了。然而,只有经历过才发现,它并没有那么神秘,它并没有那么令人颤抖,甚至,它只是很普通的一场测验而已。

点击阅读全文...

10 Jun

费曼积分法——积分符号内取微分(1)

帅气的天才科学家费曼

帅气的天才科学家费曼

似乎有好久都没有写文章感觉,高考结束了,继续研究。先总结一下考前的一些结果。

这个文章讲的是一个叫“积分符号内取微分”东西,这是一个很有趣而且有用的求定积分的方法。在这里我又擅自把它叫做“费曼积分法”,因为我是从费曼的自传《别闹了,费曼先生》中看到这种方法的。当然,费曼不是这个方法的首创者,他仅仅是是喜欢、熟练这种方法,并将它记载在了自传中。具体情况是怎样的呢?我先不多说,请读者直接看《别闹了,费曼先生》中的情节。

点击阅读全文...

12 Jun

费曼积分法——积分符号内取微分(2)

上一篇文章我对“费曼积分法”做了一个简单的介绍,并通过举例来初步展示了它的操作步骤。但是,要了解一个方法,除了知道它能够干什么之外,还必须了解它的原理和方法,这样我们才能够更好地掌握它。因此,我们需要建立“积分符号内取微分”的一般理论,为进一步的应用奠基。

一般原理

我们记
$$G(a)=\int_{m(a)}^{n(a)} f(x,a)dx$$

在这里,f(x,a)是带有参数a的关于x的函数,而积分区间是关于参数a的两个函数,这样的积分也叫变限积分,可以理解为是普通定积分的推广。我们记F(x,a)为f(x,a)的原函数,也就是说$\frac{\partial F(x,a)}{\partial x}=f(x,a)$,那么按照微积分基本定理,我们就有:
$$G(a)=F(n(a),a)-F(m(a),a)$$

点击阅读全文...