【不可思议的Word2Vec】 3.提取关键词
By 苏剑林 | 2017-04-07 | 202880位读者 | 引用本文主要是给出了关键词的一种新的定义,并且基于Word2Vec给出了一个实现方案。这种关键词的定义是自然的、合理的,Word2Vec只是一个简化版的实现方案,可以基于同样的定义,换用其他的模型来实现。
说到提取关键词,一般会想到TF-IDF和TextRank,大家是否想过,Word2Vec还可以用来提取关键词?而且,用Word2Vec提取关键词,已经初步含有了语义上的理解,而不仅仅是简单的统计了,而且还是无监督的!
什么是关键词?
诚然,TF-IDF和TextRank是两种提取关键词的很经典的算法,它们都有一定的合理性,但问题是,如果从来没看过这两个算法的读者,会感觉简直是异想天开的结果,估计很难能够从零把它们构造出来。也就是说,这两种算法虽然看上去简单,但并不容易想到。试想一下,没有学过信息相关理论的同学,估计怎么也难以理解为什么IDF要取一个对数?为什么不是其他函数?又有多少读者会破天荒地想到,用PageRank的思路,去判断一个词的重要性?
说到底,问题就在于:提取关键词和文本摘要,看上去都是一个很自然的任务,有谁真正思考过,关键词的定义是什么?这里不是要你去查汉语词典,获得一大堆文字的定义,而是问你数学上的定义。关键词在数学上的合理定义应该是什么?或者说,我们获取关键词的目的是什么?
【语料】百度的中文问答数据集WebQA
By 苏剑林 | 2017-04-12 | 227101位读者 | 引用信息抽取
众所周知,百度知道上有大量的人提了大量的问题,并且得到大量的回复。然而,百度知道上的回复者貌似懒人居多,他们往往喜欢直接在网上复制粘贴一大片来作为回答内容,而且这些内容可能跟问题相关,也可能跟问题不相关,比如
https://zhidao.baidu.com/question/557785746.html
问:广州白云山海拨多高
答:广州白云山(Guangzhou Baiyun Mountain),是新 “羊城八景”之首、国家4A级景区和国家重点风景名胜区。它位于广州市的东北部,为南粤名山之一,自古就有“羊城第一秀”之称。山体相当宽阔,由30多座山峰组成,为广东最高峰九连山的支脉。面积20.98平方公里,主峰摩星岭高382米(注:最新测绘高度为372.6米——国家测绘局,2008年),峰峦重叠,溪涧纵横,登高可俯览全市,遥望珠江。每当雨后天晴或暮春时节,山间白云缭绕,蔚为奇观,白云山之名由此得来
科学空间添加新域名kexue.fm
By 苏剑林 | 2017-04-23 | 33063位读者 | 引用在上个月,偶然间发现kexue.fm这个域名还没被注册,感觉挺不错的,所以赶紧把它注册了。
事实上,笔者一直以来都挺喜欢fm这个后缀的域名,因为FM也是电台的简写,fm域名的网站,从域名上就给人一种听电台般的惬意。刚好,顺手注册了kexue.fm这个域名,感觉很配本博客“科学空间”这个名字,也很符合本博客创办之初的理念——让科学流行起来——这也意味着科学会像听电台般舒服。当然,另一方面,它也更加好记。域名在大概一个月前就注册好了,但域名的备案,前前后后花了差不多一个月的时间,所以到现在才加上到科学空间中。如今科学空间的服务器也已经迁移到了阿里云。
原来的域名spaces.ac.cn也会一直保留着,双域名皆可访问。此外,申请了@spaces.ac.cn后缀邮箱的读者也不用担心,这个邮箱也会一直保留着。
欢迎大家多用新域名访问^_^
【语料】2500万中文三元组!
By 苏剑林 | 2017-04-24 | 91429位读者 | 引用闲聊
这两年,知识图谱、问答系统、聊天机器人等领域是越来越火了。知识图谱是一个很泛化的概念,在我看来,涉及到知识库的构建、检索、利用等机器学习相关的内容,都算知识图谱。当然,这也不是个什么定义,只是个人的直观感觉。
做知识图谱的读者都知道,三元组是结构化知识的一种方法,是做知识型问答系统的重要组成部分。对于英文领域,已经有一些较大的开源的三元组语料库,而很显然,中文目前还没有这样的语料库共享(哪怕有人爬取到了,也珍藏起来了)。笔者前段时间写了个百度百科的爬虫,爬了一段时间,抓了几百万个百度百科的词条。其中不少词条含有一些结构化的信息,直接抽取出来,就是有效的“三元组”了,可以用来做知识图谱。本文分享的三元组语料正是由此而来,共有2500万个三元组。
【不可思议的Word2Vec】 4.不一样的“相似”
By 苏剑林 | 2017-05-01 | 145248位读者 | 引用相似度的定义
当用Word2Vec得到词向量后,一般我们会用余弦相似度来比较两个词的相似程度,定义为
$$\cos (\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}\cdot\boldsymbol{y}}{|\boldsymbol{x}|\times|\boldsymbol{y}|}$$
有了这个相似度概念,我们既可以比较任意两个词之间的相似度,也可以找出跟给定词最相近的词语。这在gensim的Word2Vec中,由most_similar函数实现。
等等!我们很快给出了相似度的计算公式,可是我们居然还没有“定义”相似!连相似都没有定义,怎么就得到了评估相似度的数学公式了呢?
要注意,这不是一个可以随意忽略的问题。很多时候我们都不知道我们干的是什么,就直接去干了。好比上一篇文章说到提取关键词,相信很多人都未曾想过,什么是关键词,难道就仅仅说关键词就是很“关键”的词?而如果想到,关键词就是用来估计文章大概讲什么的,这样我们就得到一种很自然的关键词定义
$$keywords = \mathop{\text{argmax}}_{w\in s}p(s|w)$$
进而可以用各种方法对它建模。
回到本文的主题来,相似度怎么定义呢?答案是:看场景定义所需要的相似。
记录一次半监督的情感分析
By 苏剑林 | 2017-05-04 | 53385位读者 | 引用本文是一次不怎么成功的半监督学习的尝试:在IMDB的数据集上,用随机抽取的1000个标注样本训练一个文本情感分类模型,并且在余下的49000个测试样本中,测试准确率为73.48%。
思路
本文的思路来源于OpenAI的这篇文章:
《OpenAI新研究发现无监督情感神经元:可直接调控生成文本的情感》
文章里边介绍了一种无监督(实际上是半监督)做情感分类的模型的方法,并且实验效果很好。然而文章里边的实验很庞大,对于个人来说几乎不可能重现(在4块Pascal GPU花了1个月时间训练)。不过,文章里边的思想是很简单的,根据里边的思想,我们可以做个“山寨版”的。思路如下:
我们一般用深度学习做情感分类,比较常规的思路就是Embedding层+LSTM层+Dense层(Sigmoid激活),我们常说的词向量,相当于预训练了Embedding层(这一层的参数量最大,最容易过拟合),而OpenAI的思想就是,为啥不连LSTM层一并预训练了呢?预训练的方法也是用语言模型来训练。当然,为了使得预训练的结果不至于丢失情感信息,LSTM的隐藏层节点要大一些。
如何“扒”站?手把手教你爬百度百科~
By 苏剑林 | 2017-05-17 | 33636位读者 | 引用fashion mnist的一个baseline (MobileNet 95%)
By 苏剑林 | 2017-08-27 | 82175位读者 | 引用浅尝
昨天简单试了一下在fashion mnist的gan模型,发现还能work,当然那个尝试也没什么技术水平,就是把原来的脚本改一下路径跑了就完事。今天回到fashion mnist本身的主要任务——10分类,用Keras测了一下一些模型在上面的分类效果,最后得到了94.5%左右的准确率,加上随机翻转的数据扩增能做到95%。
首先随便手写了一些模型的组合,测试发现准确率都不大好,看来对于这个数据集来说,自己构思模型是比较困难的了,于是想着用现成的模型结构。一说到现成的cnn模型,基本上我们都会想到VGG、ResNet、inception、Xception等,但这些模型为解决imagenet的1000分类问题而设计,用到这个入门级别的数据集上似乎过于庞大了,而且也容易过拟合。后来突然想起,Keras好像自带了个叫MobileNet的模型,查看了一下模型权重,发现参数量不大,但是容量应该还是可以的,故选用MobileNet做实验。
最近评论