26 Dec

费曼路径积分思想的发展(二)

2、量子力学中的作用量量子化方法

在发现经典电动力学的这个新作用量之后,费曼便试图将它量子化,以期得到一个令人满意的量子电动力学。当时,量子物理学中还没有采用作用量方法。常规的途径是从哈密顿函数开始,用算符来取代经典哈密顿函数中的位置和动量,再应用非对易关系。费曼当时还不知道,狄拉克在1932年的一篇文章中已经将作用量和拉格朗日函数引进了量子力学[9]。正当他百思不得其解时,一位在普林斯頓访问的欧洲学者吿诉他,狄拉克在某某文章中讨论过这一间题。得知此信息后,费曼次日即去图书馆翻阅此文。

狄拉克在1932年的文章中引进了一个非常重要的函数$ < q_{t+dt}|q_t > $,并指出它“相当于” $\exp[\frac{i}{\hbar}Ldt]$[9]。这“意味着”,狄拉克强调:“我们不应该把经典的拉格朗日函数看成是坐标和速度的函数,而应把它看作两个不同时刻t和r+dt的坐标的函数。"[9]在狄拉克思想的启发之下,费曼径直把“相当于”改写为“正比于”:

点击阅读全文...

7 Jan

角的疑惑——为什么使用弧度?

也许当我们从小学数学进入中学数学的过程中,让我们最郁闷的事情就是课本上把用的好好的角度制改为弧度制了,那个好好的360°的周角无端端变成了一个无理数$2\pi$,为此还多了一堆转换公式,那时这可把我折腾了好一阵子。为什么一个完美的360°不用,反而转向一个无理数$2\pi$?这里边涉及到了相当多的原因,在这些原因中,重新体现了数学体系的一致与简约。当然,文章里的观点只是我自己的看法,仅供大家参考。

弧度制:简约的要求

如果读者已经学过了极限理论,那么我就可以直接说,引入弧度制,是为了在这样的一种角的度量体制下,满足:
$$\lim_{x\to 0} \frac{\sin x}{x}=1$$

点击阅读全文...

16 Jan

新科学家:割裂时间空间,统一相对论量子论

这篇文章源于《新科学家》2010年8月7日刊,它介绍了物理学家Horava为了统一相对论和量子力学,把广义相对论的时空联系割裂的尝试。在相对论中,时间和空间结合成了不可分割的整体。而现在,有物理学家却要把时间与空间分开,来建立让广义相对论和量子力学相调和的统一理论。我对这个理论挺感兴趣的,当然,我还没有能力弄懂它。只是它符合了我们大多数人的一个直觉,就是时间总有跟空间不同的地方,它们之间不应该完全等同起来。不过,事实如何,只有未来的实验能够严重了。

本文并没有官方的中文译文,现载的译文来自“译言网”。译文有一些翻译不大正当的地方,由于时间限制,无法一一修正,但是我觉得对于理解本文内容已经足够了。如果有疑问,不妨参考后边的英文原文,并在此提出与大家讨论。

对爱因斯坦的反思:空间-时间耦合的物理数学的终结

纠结于融合引力和量子力学的物理学家们正向着一个受到铅笔芯启发的理论欢呼雀跃,这个理论可以很简单地让他们取得成功。

它曾是一个改变了我们思考空间和时间的方式的报告。那一年是1908年,德国数学家赫尔曼-闵可夫斯基正尝试着理解爱因斯坦火热的新思想——即我们现在所熟知的狭义相对论,它描述当物质运动很快时它们是如何收缩以及时间是如何扭曲的。“从此独立的空间和时间将注定淡出到纯粹的虚幻中,”闵可夫斯基说道:“而只有两者的统一才能保证一个独立的现实世界。”

点击阅读全文...

8 Apr

浅谈引力助推

这已经是去年写的稿件了,刊登在今年二月份的《天文爱好者》上,本文的标题还登载了该期天爱的封面上,当时甚是高兴呢!在此与大家分享、共勉。

相信许多天文爱好者都知道第一、第二、第三宇宙速度的概念,也会有不少的天爱自己动手计算过它们。我们道,只要发射速度达到7.9km/s,宇宙飞船就可以绕地球运行了;超过11.2km/s,就可以抛开地球,成为太阳系的一颗“人造行星”;再大一点,超过16.7km/s,那么就连太阳也甩掉了,直奔深空。

16.7km/s,咋看上去并不大,因为地球绕太阳运行的速度已经是30km/s了,这个速度在宇宙中实在是太普通了。但是对于我们目前的技术来说,它大得有点可怕。维基百科上的资料显示,史上最强劲的火箭土星五号在运送阿波罗11号到月球时,飞船最终也只能加速到接近逃逸速度,即11.2km/s,而事实上第三宇宙速度已经是是目前人造飞行器的速度极限了。可是没有速度,我们就不能发射探测器去探索深空,那些科幻小说中的“星际移民”,就永远只能停留在小说上了。

点击阅读全文...

25 Apr

学习场论(电磁场、重力场)

本博客的文章其实一定程度上反映了我在该时期的学习研究,所以我觉得写blog是一件很惬意的事情,它记录着我的成长历程。读者可能留意到,我上学期说对量子力学很感兴趣,也算是入了一点点门。这学期开学初表示对摄动理论方面的知识很感兴趣,也研究了一两个星期。再后来就将学习重点放在了相对论上面了。现在呢?我在学习朗道的《场论》,主要先学习电磁场(电动力学)。

有的读者可能比较无语:你怎么变来变去,学习不是贵在精而不在多吗?

点击阅读全文...

11 May

电的相对论效应——磁“子虚乌有”?

也许大家会觉得,相对论中有一个因子
$$\gamma =\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$$
因此,相对论的效应只有在高速情况下,即v比较接近于c的情况下才会凸显出来。这在一般情况下是正确的,但是却不全对。因为存在相当明显的、速度低于1mm/s的相对论效应——那就是几乎人尽皆知的“磁”。

之前已经提及过,磁场可以解释为电场的相对论效应,因此所有电磁现象都可以归因为电场和相对论。事实上,这是正确的,只是教科书上并没有明确说出这一点而已。于是我们就不难理解“为什么电磁学的麦克斯韦方程组会与相对论协调”、“为什么电场与磁场的表现如此相似”等等问题了,因为它们的探究本身就在相对论的框架下,磁场和电场都是一个东西的结果。

点击阅读全文...

22 Jul

《虚拟的实在(4)》——质量是什么

笔者很少会谈到定义性的东西,原因很简单,因为我也不见得会比大家清楚,或者说也未必比大家所知道的准确。不过,刚刚与同好讨论过与质量相关的问题,就跟大家分享一下。

最初的问题是能量能不能转化为物质,我觉得根据$E=mc^2$,是显然可以的,例子嘛,我首先想到在量子场论中的真空是会不断产生和湮灭正负电子对的,因此这可以作为一个证据。但是这个感觉上太遥远了,所以我在互联网搜索了一下,不过搜到的内容大同小异:

当辐射光子能量足够高时,在它从原子核旁边经过时,在核库仑场作用下,辐射光子可能转化成一个正电子和一个负电子,这种过程称作电子对效应。
正负电子对效应

点击阅读全文...

25 Jul

【翻译】星空之夜:夏季恒星的色彩

笔录:在假期基本上是没有什么机会接触到英语的,平时看的数学物理书一般都是中文版的,因为现在学得还很浅,很少会有非找英语资料不可的时候。不过英语的重要性不言而喻,因此多练习一下还是必须的。突然想起很久没有翻译过文章了,就到《科学美国人》杂志上找了一篇有关夏季星空的小短文来练练笔。在此献丑了。

这个夏天的星空之夜,观星爱好者可以看到恒星发出彩虹般的色彩。
By Joe Rao and SPACE.com

点击阅读全文...