Loading [MathJax]/extensions/TeX/boldsymbol.js
17 Jan

细水长flow之TARFLOW:流模型满血归来?

不知道还有没有读者对这个系列有印象?这个系列取名“细水长flow”,主要介绍flow模型的相关工作,起因是当年(2018年)OpenAI发布了一个新的流模型Glow,在以GAN为主流的当时来说着实让人惊艳了一番。但惊艳归惊艳,事实上在相当长的时间内,Glow及后期的一些改进在生成效果方面都是比不上GAN的,更不用说现在主流的扩散模型了。

不过局面可能要改变了,上个月的论文《Normalizing Flows are Capable Generative Models》提出了新的流模型TARFLOW,它在几乎在所有的生成任务效果上都逼近了当前SOTA,可谓是流模型的“满血”回归。

TARFLOW的生成效果

TARFLOW的生成效果

点击阅读全文...

6 Nov

VQ的又一技巧:给编码表加一个线性变换

《VQ的旋转技巧:梯度直通估计的一般推广》中,我们介绍了VQ(Vector Quantization)的Rotation Trick,它的思想是通过推广VQ的STE(Straight-Through Estimator)来为VQ设计更好的梯度,从而缓解VQ的编码表坍缩、编码表利用率低等问题。

无独有偶,昨天发布在arXiv上的论文《Addressing Representation Collapse in Vector Quantized Models with One Linear Layer》提出了改善VQ的另一个技巧:给编码表加一个线性变换。这个技巧单纯改变了编码表的参数化方式,不改变VQ背后的理论框架,但实测效果非常优异,称得上是简单有效的经典案例。

点击阅读全文...

18 Nov

Adam的epsilon如何影响学习率的Scaling Law?

上一篇文章《当Batch Size增大时,学习率该如何随之变化?》我们从多个角度讨论了学习率与Batch Size之间的缩放规律,其中对于Adam优化器我们采用了SignSGD近似,这是分析Adam优化器常用的手段。那么一个很自然的问题就是:用SignSGD来近似Adam究竟有多科学呢?

我们知道,Adam优化器的更新量分母会带有一个\epsilon,初衷是预防除零错误,所以其值通常很接近于零,以至于我们做理论分析的时候通常选择忽略掉它。然而,当前LLM的训练尤其是低精度训练,我们往往会选择偏大的\epsilon,这导致在训练的中、后期\epsilon往往已经超过梯度平方大小,所以\epsilon的存在事实上已经不可忽略。

因此,这篇文章我们试图探索\epsilon如何影响Adam的学习率与Batch Size的Scaling Law,为相关问题提供一个参考的计算方案。

点击阅读全文...

15 Dec

这篇文章我们再次聚焦于扩散模型的采样加速。众所周知,扩散模型的采样加速主要有两种思路,一是开发更高效的求解器,二是事后蒸馏。然而,据笔者观察,除了上两篇文章介绍过的SiD外,这两种方案都鲜有能将生成步数降低到一步的结果。虽然SiD能做到单步生成,但它需要额外的蒸馏成本,并且蒸馏过程中用到了类似GAN的交替训练过程,总让人感觉差点意思。

本文要介绍的是《One Step Diffusion via Shortcut Models》,其突破性思想是将生成步长也作为扩散模型的条件输入,然后往训练目标中加入了一个直观的正则项,这样就能直接稳定训练出可以单步生成模型,可谓简单有效的经典之作。

ODE扩散

原论文的结论是基于ODE式扩散模型的,而对于ODE式扩散的理论基础,我们在本系列的(六)(十二)(十四)(十五)(十七)等博客中已经多次介绍,其中最简单的一种理解方式大概是(十七)中的ReFlow视角,下面我们简单重复一下。

点击阅读全文...

12 Jan

低秩近似之路(五):CUR

再次回到低秩近似之路上。在《低秩近似之路(四):ID》中,我们介绍了“插值分解(Interpolative Decomposition,ID)”,这是为矩阵\boldsymbol{M}\in\mathbb{R}^{n\times m}寻找\boldsymbol{C}\boldsymbol{Z}形式的近似的过程,其中\boldsymbol{C}\in\mathbb{R}^{n\times r}是矩阵\boldsymbol{M}的若干列,而\boldsymbol{Z}\in\mathbb{R}^{r\times m}是任意矩阵。

这篇文章我们将介绍CUR分解,它跟插值分解的思想一脉相承,都是以原始矩阵的行、列为“骨架”来构建原始矩阵的近似,跟ID只用行或列之一不同,CUR分解同时用到了行和列。

基本定义

其实这不是本站第一次出现CUR分解了。早在《Nyströmformer:基于矩阵分解的线性化Attention方案》我们就介绍过矩阵的Nyström近似,它实际上就是CUR分解,后来在《利用CUR分解加速交互式相似度模型的检索》还介绍了CUR分解在降低交互式相似度模型的检索复杂度的应用。

点击阅读全文...

27 Feb

Muon续集:为什么我们选择尝试Muon?

本文解读一下我们最新的技术报告《Muon is Scalable for LLM Training》,里边分享了我们之前在《Muon优化器赏析:从向量到矩阵的本质跨越》介绍过的Muon优化器的一次较大规模的实践,并开源了相应的模型(我们称之为“Moonlight”,目前是一个3B/16B的MoE模型)。我们发现了一个比较惊人的结论:在我们的实验设置下,Muon相比Adam能够达到将近2倍的训练效率。

Muon的Scaling Law及Moonlight的MMLU表现

Muon的Scaling Law及Moonlight的MMLU表现

优化器的工作说多不多,但说少也不少,为什么我们会选择Muon来作为新的尝试方向呢?已经调好超参的Adam优化器,怎么快速切换到Muon上进行尝试呢?模型Scale上去之后,Muon与Adam的性能效果差异如何?接下来将分享我们的思考过程。

点击阅读全文...

5 Mar

MoE环游记:3、换个思路来分配

这篇文章我们继续探讨MoE的负载均衡问题。在上一篇文章《MoE环游记:2、不患寡而患不均》中,我们主要讨论了通过Aux Loss来促进负载均衡的思路。Aux Loss固然简单直观,但它也有一个明显的缺点——权重不好调——调低了无法促进均衡,调高了容易损害LM Loss,所以业界一直有寻找替代方案的尝试。

本文要分享的是名为“Loss-Free”的方案,由DeepSeek在《Auxiliary-Loss-Free Load Balancing Strategy for Mixture-of-Experts》提出。和DeepSeek众多耀眼的开源作品相比,这篇论文也许不算起眼,但在笔者看来,它潜在的学术影响力可能远超其他工作,因为所提方法不仅简单有效,而且极具普适性,堪称经典。

方法大意

面对负载不均衡,Aux Loss的应对思路是通过额外的损失引导Router给出均衡的打分,而Loss-Free的想法则是换个新的分配思路,即不改变Router现有打分结果,而是改变\mathop{\text{argtop}}_k \boldsymbol{\rho}这个分配方式。

点击阅读全文...

13 Mar

初探muP:超参数的跨模型尺度迁移规律

这篇文章我们来学习Maximal Update Parametrization,简称“muP”,它出自论文《Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer》,随着LLM训练的普及,它逐渐已经成为了科学炼丹的事实标配之一。

众所周知,完整训练一次大型LLM的成本是昂贵的,这就决定了我们不可能直接在大型LLM上反复测试超参数。一个很自然的想法是希望可以在同结构的小模型上仔细搜索超参数,找到最优组合后直接迁移到大模型上。尽管这个想法很朴素,但要实现它并不平凡,它需要我们了解常见的超参数与模型尺度之间的缩放规律,而muP正是这个想法的一个实践。

方法大意

在接入主题之前,必须先吐槽一下muP原论文写得实在太过晦涩,并且结论的表达也不够清晰,平白增加了不少理解难度,所以接下来笔者尽量以一种(自认为)简明扼要的方式来复现muP的结论。

点击阅读全文...