勾股数的通解及其推广
By 苏剑林 | 2014-07-01 | 21651位读者 | 引用在之前的文章《几何的数与数的几何:超复数的浅探究》中,我们谈及过四元数。四元数源于把复数的$|(a+bi)(c+di)|=|a+bi|\times|c+di|$这一独特的性质进行高维推广。为什么偏爱这一性质?读者或许已经初步知道一些用到复数的这一性质的例子,有几何方面的,也有物理方面的,这一性质为处理模长相关问题带来了美妙的方便。本文介绍它在求三元二次齐次不定方程的整数通解中的应用,这一例子同样展示了复数这一性质的神奇,让我们不得不认同当初哈密顿为了将其推广到高维而不惜耗费十年光阴的努力。
勾股数问题
读者或许已经知道,勾股数,也就是满足
$$x^2+y^2=z^2$$
的所有自然数解,由下面公式给出
$$x=a^2-b^2,\quad y=2ab,\quad z=a^2+b^2$$
从费马大定理谈起(四):唯一分解整环
By 苏剑林 | 2014-08-17 | 44559位读者 | 引用在小学的时候,数学老师就教我们除法运算:
被除数 = 除数 × 商 + 余数
其中,余数要小于除数。不过,我们也许未曾想到过,这一运算的成立,几乎是自然数$\mathbb{N}$所有算术(数论)运算性质成立的基础!在代数中,上面的运算等式称为带余除法(division algorithm)。如果在一个整环中成立带余除法,那么该整环几乎就拥有了所有理想的性质,比如唯一分解性,也就是我们说的算术基本定理。这样的一个整环,被称为唯一分解整环(Unique factorization domain)。
欧几里得整环
唯一分解定理说的是在一个整环之中,所有的元素都可以分解为该整环的某些“素元素”之积,并且在不考虑元素相乘的顺序和相差单位数的意义之下,分解形式是唯一的。我们通常说的自然数就成立唯一分解定理,比如$60=2^2\times 3\times 5$,这种分解是唯一的,这看起来相当显然,但实际上唯一分解定理相当不显然。首先,并不是所有的整数环都成立唯一分解定理的,我们考虑所有偶数组成的环$2\mathbb{Z}$,要注意,在$2\mathbb{Z}$中,2、6、10、30都是素数,因为它们无法分解成两个偶数的乘积了,但是$60=6\times 10=2\times 30$,存在两种不同的分解,因此在这样的数环中,唯一分解定理就不成立了。
从费马大定理谈起(五):n=4
By 苏剑林 | 2014-08-19 | 91900位读者 | 引用从费马大定理谈起(七):费马平方和定理
By 苏剑林 | 2014-08-23 | 30303位读者 | 引用本想着开始准备n=3的证明,但这需要引入Eisenstein整数的概念,而我们已经引入了高斯整数,高斯整数的美妙还没有很好地展示给读者。从n=4的两个证明可以知道,引入高斯整数的作用,是把诸如$z^n-y^n$的式子进行完全分解。然而,这一点并没有给我们展示多少高斯整数的神奇。读者或许已经知道,复分析中很多简单的结果,如果单纯用实数描述出来,便会给人巧夺天工的感觉,在涉及到高斯整数的数论中也是一样。本文就让我们来思考费马平方和定理,以此再领会在高斯整数中处理某些数论问题时的便捷。——我们从费马大定理谈起,但又并不仅仅只谈费马大定理。
费马平方和定理:奇素数$p$可以表示为两个整数的平方和,当且仅当该素数具有$4k+1$的形式,而且不考虑相加顺序的情况下,表示法是唯一的。
最近的很多篇文章都是数论内容,属于纯数学的范畴了,对于很多只爱好物理或应用数学的读者可能会看得头晕了。今天我们来谈些不那么抽象的东西,我们来谈谈风筝,并来分析一下风筝的飞行力学。
爱情就像放风筝,线不能来得太紧,也不能拉得太松,你只会给对方飞翔的空间,他/她始终会回到你身边,因为有一条线系着双方。
风筝,在我们这个地方叫做纸鸢,相信大家童年时一定会放过。笔者小时候放风筝时,已经是小学五年级之前的事了。这个暑假突然童心一起,凭着小时候的回忆,简单做了个风筝来玩,居然真的飞起来了!兴奋之余,与大家分享一下。如今再来放风筝,真心感觉到放风筝也有很多技巧,让风筝飞,还不是件容易的事情呢,真可谓人生处处皆学问呀。上面关于风筝的比喻,正是放风筝的真实写照吧。
风筝可以说是人类摆脱地球重力的最原始尝试吧,跟发射宇宙飞船的火箭不同,风筝是借助风力来抵抗重力,严格来讲,即便是现在的飞机,也离不开这个原理(我们最后会谈到)。简单来讲,风筝就是用轻的支架撑开一个轻盈的平面,然后系上一个线圈。我们简单做一个风筝,只需要一张报纸,两条竹篾和一点透明胶,十分钟内就可以完成一个。当然,现在已经有各种各样的好看的风筝,甚至还有龙形的风筝,但是,自己动手简单做一个风筝,还是相当好玩的。
风筝自然是借助风力飞起来的,可是为什么风筝得用绳子牵着才能飞得更高、绳断了反而掉下来?风大多时,才适合放风筝?飞机又是怎么飞起来的?下面我们试着分析这些问题。
几个有关集合势的“简单”证明
By 苏剑林 | 2014-10-01 | 83389位读者 | 引用我们这学期开设《实变函数》的课程,实变函数的第一章是集合。关于无穷集合的势,有很多异于直觉的结论。这些结论的证明技巧,正是集合论的核心方法。然而,我发现虽然很多结论跟我们的直觉相违背,但是仔细回想,它又没我们想象中那样“离谱”。而我们目前使用的教科书《实变函数论与泛函分析》(曹广福),却没有使用看来简单的证明,反而用一些相对复杂的定理,给人故弄玄虚的感觉。
一、全体实数不能跟全体正整数一一对应
这是集合论中的基本结论之一。证明很简单,如果全体实数可以跟全体正整数一一对应,那么$(0,1)$上的实数就可以跟全体正整数一一对应,把$(0,1)$上的全体实数表示为没有0做循环节的无限小数(比如0.1表示为0.0999...),那么设一种对应为:
$$\begin{aligned}&a_1=0.a_{11} a_{12} a_{13} a_{14}\dots\\
&a_2=0.a_{21} a_{22} a_{23} a_{24}\dots\\
&a_3=0.a_{31} a_{32} a_{33} a_{34}\dots\\
&\dots\dots
\end{aligned}$$
班门弄斧:Python的代码能有多简洁?
By 苏剑林 | 2014-10-07 | 28938位读者 | 引用实数集到无理数集的双射
By 苏剑林 | 2014-09-22 | 36437位读者 | 引用集合论的结果告诉我们,全体实数的集合$\mathbb{R}$跟全体无理数的集合$\mathbb{R} \backslash \mathbb{Q}$是等势的,那么,如何构造出它们俩之间的一个双射出来呢?这是一个颇考读者想象力的问题。当然,如果把答案给出来,又似乎显得没有那么神秘。下面给出笔者构造的一个例子,读者可以从中看到这种映射是怎么构造的。
为了构造这样的双射,一个很自然的想法是,让全体有理数和部分无理数在它们自身内相互映射,剩下的无理数则恒等映射。构造这样的一个双射首先得找出一个函数,它的值只会是无理数。要找到这样的函数并不难,比如我们知道:
1、方程$x^4 + 1 = y^2$没有除$x=0,y=\pm 1$外的有理点,否则将与费马大定理$n=4$时的结果矛盾。
2、无理数的平方根依然是无理数。
根据这些信息,足以构造一个正实数$\mathbb{R}^+$到正无理数$\mathbb{R}^+ \backslash \mathbb{Q}^+$的双射,然后稍微修改一下,就可以得到$\mathbb{R}$到$\mathbb{R} \backslash \mathbb{Q}$的双射。
最近评论