30 Nov

算子与线性常微分方程(上)

简介

最近在学习量子力学的时候,无意中涉及到了许多矩阵(线性代数)、群论等知识,并且发现其中有不少相同的思想,其中主要是用算子来表示其对函数的作用和反作用。比如我们可以记$D=\frac{d}{dx}$,那么函数$f(x)$的导数就可以看作是算子D对它的一次作用后的结果,二阶导数则是作用了两次,等等。而反过来,$D^{-1}$就表示这个算子的反作用,它把作用后的函数(像)还原为原来的函数(原像),当然,这不是将求导算子做简单的除法,而是积分运算。用这种思想来解答线性微分方程,有着统一和简洁的美。

线性微分方程是求解一切微分方程的基础,一般来说它形式比较简单,多数情况下我们都可以求出它的通解。在非相对论性量子力学的薛定谔方程中,本质上就是在求解一道二阶偏线性微分方程。另一方面,在许多我们无法求解的非线性系统中,线性解作为一级近似,对于定性分析是极其重要的。

一阶线性常微分方程

这是以下所有微分方程求积的一个基础形式,即$\frac{dy}{dx}+g(x)y=f(x)$的求解。这是通过常数变易法来解答的,其思想跟天体力学中的“摄动法”是一致的,首先在无法求解原微分方程的时候,先忽略掉其中的一些小项,求得一个近似解。即我们先求解
$$\frac{dy}{dx}+g(x)y=0$$

点击阅读全文...

30 Nov

算子与线性常微分方程(下)

不可交换

很自然会想到把这种方法延伸到变系数微分方程的求解,也许有读者回去自己摆弄了一下却总得不到合适的解而感到困惑。在这里群的非Abel性就体现出来了,首先用一个例子来说明一下,我们考虑算子的复合
$$(D-x)(D+x)=D^2-x^2+(Dx-xD)$$

我们要谨慎使用交换律,我们记$[P,Q]=PQ-QP$

其中P和Q是两个算子,此即量子力学中的“对易式”,用来衡量算子P和算子Q的可交换程度,当然,它本身也是一个算子。我们先来求出$[D,x]$给出了什么(要是它是0的话,那就表明运算可以交换了)。究竟它等于什么呢?直接看是看不出的,我们把它作用于一个函数:
$$[D,x]y=(Dx-xD)y=D(xy)-xDy=yDx+xDy-xDy=y$$

由于“近水楼台先得月”,所以$Dxy$表示x先作用于y,然后D再作用于(xy);而$xDy$表示D先作用于y,然后x再作用于Dy。最终我们得到了

点击阅读全文...

23 Dec

“末日”的快乐!

传说中的“末日”,正好是中国传统的冬至节。它的到来并没有引起我们的恐慌,反而,让我有一颗更加平静的心去享受“过冬”的乐趣。

冬至在我们农村是很重要的一个节日,一般来说全家人都要聚在一起吃顿饭,还会包粽子等等。来到广州之后,回去就自然不大方便了,不过我还是想找找那种节日的感觉。于是,下午我就跑到华师西门那里,看看有没有粽子卖。不过发现西门那里基本上都是一些风味小吃,没有那久违的粽子香。不过,忽然想起小飞说她们那里冬至是吃汤圆的,好吧,入乡随俗,我也买了两包汤圆回宿舍煮啦。

点击阅读全文...

26 Dec

费曼路径积分思想的发展(一)

注:这是郝刘祥前辈的一篇论文,98年的时候发表在《自然辩证法通讯》上,里边讲述了费曼以及路径积分的相关故事。我从网上下载下来,原文是很粗糙的pdf文件,我特意将它转化为网页文件,供大家欣赏。有些公式很模糊,所以我已经到图书馆查找了原文,但是由于作者非理论物理专业人员,还不确定部分公式是否正确,请读者慎读。原文较长,将分开几篇来发。如果涉及到版权问题,请作者告之(bojone@spaces.ac.cn),我将会尽快处理掉。

自然辩证法通讯(JOURNAL OF DIALECTICS OF NATURE)
第二十卷总115期,1998第3期

郝刘祥

摘要:该文首先阐述了 Richard Feynman为解决经典电动力学的发散问题而做的艰苦努力,进而论述了这种努力的副产品何以使他偏爱作用量表述,以及他是如何在Dirac文章的启发下得到非相对论量子力学的第三种形式--作用量量子化方案的。文章的第三部分叙述了费曼将其方案推广到相对论情形的尝试和费曼图的由来。最后,该文试图就路径积分方法在量子场论等领域中的广泛应用以及费曼对量子场论的重大疑惑作一简要的说明。

关键词:费曼,作用量,几率幅,路径积分

点击阅读全文...

27 Dec

费曼路径积分思想的发展(三)

3、费曼图和量子电动力学的重整化

在1947年美国避难岛(Shelter Island)会议上,兰姆报导了他的重大发现,即现今所称的兰姆位移;氢原子的$2S_{\frac{1}{2}}$能级比$2P_{\frac{1}{2}}$高出约1000MHz。而按照狄拉克理论,对纯库仑相互作用的电子-质子系统,这两个能级应该是简并的。人们很快就认识到,该位移应归之于一阶近似的辐射校正[19]。贝特用一个电子的校正质量就非相对论近似得出了氢原子nS能级的位移公:

$$\frac{8}{3\pi}(\frac{e^2}{\hbar c})Ry \frac{Z^4}{n^3} Ln\frac{K}{ < E_n-E_m > _{AV}}$$

点击阅读全文...

27 Dec

费曼路径积分思想的发展(四)

4、量子场论中的泛函方法

路径积分出现之初,大多数物理学家反映都很冷淡,甚至怀疑它的正确性。这一方面是对路径积分方法的陌生与误解所致。在泊珂淖会议上,玻尔就把费曼图误解成粒子运动的轨迹,并对之进行了尖锐的批评。([19],P.459)另一方面,费曼并没有用公理化的方法,从作用量或拉格朗日量出发系统地推导出费曼规则,他是靠经验、猜测、检验和比较来给出与各种图相应的规则的。尽管如此,费曼却能把他的方法推广到当时热门的介子理论,并且只需一个晚上就可解决他人用正则哈密顿方法要用几个月的时间才能解决的问题。费曼方法的有效性,使戴逊大为惊讶,并促使他相信路径积分“必定是根本上正确的”([1],P.54)理论。随之,戴逊便决定把“理解费曼(的思想)并用一种他人能理解的语言来加以阐述”([1],p.54)作为自己的主要工作。1948年,戴逊成功地证明了朝永振一朗、施温格和费曼三人的理论“在其共同适用领域内”[25]的等价性。费曼的粒子图像的路径积分方法由此改头换面,变成了场论形式的泛函积分方法。

点击阅读全文...

26 Dec

费曼路径积分思想的发展(二)

2、量子力学中的作用量量子化方法

在发现经典电动力学的这个新作用量之后,费曼便试图将它量子化,以期得到一个令人满意的量子电动力学。当时,量子物理学中还没有采用作用量方法。常规的途径是从哈密顿函数开始,用算符来取代经典哈密顿函数中的位置和动量,再应用非对易关系。费曼当时还不知道,狄拉克在1932年的一篇文章中已经将作用量和拉格朗日函数引进了量子力学[9]。正当他百思不得其解时,一位在普林斯頓访问的欧洲学者吿诉他,狄拉克在某某文章中讨论过这一间题。得知此信息后,费曼次日即去图书馆翻阅此文。

狄拉克在1932年的文章中引进了一个非常重要的函数$ < q_{t+dt}|q_t > $,并指出它“相当于” $\exp[\frac{i}{\hbar}Ldt]$[9]。这“意味着”,狄拉克强调:“我们不应该把经典的拉格朗日函数看成是坐标和速度的函数,而应把它看作两个不同时刻t和r+dt的坐标的函数。"[9]在狄拉克思想的启发之下,费曼径直把“相当于”改写为“正比于”:

点击阅读全文...

7 Jan

角的疑惑——为什么使用弧度?

也许当我们从小学数学进入中学数学的过程中,让我们最郁闷的事情就是课本上把用的好好的角度制改为弧度制了,那个好好的360°的周角无端端变成了一个无理数$2\pi$,为此还多了一堆转换公式,那时这可把我折腾了好一阵子。为什么一个完美的360°不用,反而转向一个无理数$2\pi$?这里边涉及到了相当多的原因,在这些原因中,重新体现了数学体系的一致与简约。当然,文章里的观点只是我自己的看法,仅供大家参考。

弧度制:简约的要求

如果读者已经学过了极限理论,那么我就可以直接说,引入弧度制,是为了在这样的一种角的度量体制下,满足:
$$\lim_{x\to 0} \frac{\sin x}{x}=1$$

点击阅读全文...