8 Aug

三次方程的三角函数解法

对于解方程,代数学家希望能够从理论上证明解的存在性以及解的求法,所以就有了1到4次方程的求根公式、5次及以上的代数方程没有根式可解等重要理论;然而,通常的学者(如物理学家、天文学家)都不需要这些内容,他们只关心如何尽可能快地求出指定方程的根(尤其是实数根),所以他们通常关注的是方程的数值算法,当然,如果能有一个相对简单的求根公式,也是他们所希望的。而接下来所要介绍的内容,则是满足了这一需要的三次方程的求根公式,其中用到的相当一部分的理论,是与三角函数相关的。

储备

\begin{equation}\frac{2}{\tan 2A}=\frac{1}{\tan A}-\tan A\end{equation}
\begin{equation}\frac{2}{\sin 2A}=\frac{1}{\tan A}+\tan A\end{equation}
\begin{equation}\cos(3A)=4\cos^3 A-3\cos A\end{equation}

点击阅读全文...

15 Aug

《方程与宇宙》:拉格朗日点的点点滴滴(四)

The New Calculation Of Lagrangian Point 1,2,3

L2_rendering

L2_rendering

关于n体问题,选择质心或其他定点为参考点,我们可以列出下面的运动方程:
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}\tag{19}$$
现在我们只考虑三体问题。天文学家一直希望能够找到三体问题的简洁解,可是很遗憾,庞加莱已经证明了三体问题的解是混沌的,也就是说任何微小的扰动都有可能造成不可预料的后果(可以形象的比喻为:巴西的一只蝴蝶翅膀的扇动,有可能因此美国的一场龙卷风)。

点击阅读全文...

11 Aug

谈谈“民科”——兼谈如何推翻爱恩斯坦?

推翻相对论

推翻相对论

民科,是“平民科学家”的简称,本来,无论怎么看,这个词都是一个褒义词,代表了一群默默进行科学研究的人,本来,我等天文爱好者都可以用上“民科”这一漂亮词语。然而,“得益于”某些民科(至少在中国是这样的)的狂妄自大,使得“民科”成为了另外一群人的代名词。他们他们从最基础的物理学比如牛顿力学开始,就和正统的物理学分道扬镳。他们使用的专业术语跟正统的物理学都不同。你说东,他说西,以致于民科和专业人士完全不能交流。还有一些民科从易经八卦这些所谓的哲学原理出发,提出一些自以为是的邪乎学说,完全不在物理学的轨道上。这一群人,仿佛自认为自己是救世主,他们就是崭新而又来源已久的新“民科”。由此看,民科和物理学之间存在一个无法沟通的真空。

点击阅读全文...

14 Aug

今天我们都是舟曲人——举国哀悼舟曲遇难同胞

为表达全国各族人民对甘肃舟曲特大山洪泥石流遇难同胞的深切哀悼,国务院决定,2010年8月15日举行全国哀悼活动,全国和驻外使领馆下半旗致哀,停止公共娱乐活动。

向曲舟遇难人民致哀

向曲舟遇难人民致哀

点击阅读全文...

18 Aug

设计了一个导航页

两天时间,就弄出来了一个这么简陋的东西,BoJone的网页技术实在太烂了...

科学空间-导航

科学空间-导航

点击阅读全文...

27 Aug

与向量的渊源极深的四元数

当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?

当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。

点击阅读全文...

26 Aug

“用户评价”靠谱吗?

目前,几乎所有的交易网站(亚马逊、淘宝等)都提供了“用户评价”功能,旨在通过购买者来断定产品的好坏。表面看来,这样的做法给予了大众公正、公开的感觉,然而事实果真如此吗?今年的《环球科学》第八期有一篇文章名为《用户评价靠谱吗》,其中谈到了单靠“用户评价”来评论一件产品的好坏具有不公正性。现在一场审判开始了,原告是“用户评价”,被告是《环球科学》的文章,而法官是数学。

淘宝的用户评价-截图

淘宝的用户评价-截图

审判开始了......“用户评价”坚持自己所显示的是符合实际的,《环球科学》则认为其有不合适之处。审判结果如何?

点击阅读全文...

28 Aug

月球上的多角度反射镜

各反射镜在月球上的位置

各反射镜在月球上的位置

很多读者都听说过,现在地球上可以发射激光到月球,反射回来,通过计算一来一回的时间来测量地月距离。现在问题是,怎样的镜子才能够把来自不同角度的光都以相同的方向反射回去呢?实现这一目的的镜子称为“多角度反射镜”。

点击阅读全文...