三次方程的三角函数解法
By 苏剑林 | 2010-08-08 | 84483位读者 | 引用对于解方程,代数学家希望能够从理论上证明解的存在性以及解的求法,所以就有了1到4次方程的求根公式、5次及以上的代数方程没有根式可解等重要理论;然而,通常的学者(如物理学家、天文学家)都不需要这些内容,他们只关心如何尽可能快地求出指定方程的根(尤其是实数根),所以他们通常关注的是方程的数值算法,当然,如果能有一个相对简单的求根公式,也是他们所希望的。而接下来所要介绍的内容,则是满足了这一需要的三次方程的求根公式,其中用到的相当一部分的理论,是与三角函数相关的。
储备
\begin{equation}\frac{2}{\tan 2A}=\frac{1}{\tan A}-\tan A\end{equation}
\begin{equation}\frac{2}{\sin 2A}=\frac{1}{\tan A}+\tan A\end{equation}
\begin{equation}\cos(3A)=4\cos^3 A-3\cos A\end{equation}
《方程与宇宙》:拉格朗日点的点点滴滴(四)
By 苏剑林 | 2010-08-15 | 92222位读者 | 引用The New Calculation Of Lagrangian Point 1,2,3
关于n体问题,选择质心或其他定点为参考点,我们可以列出下面的运动方程:
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}\tag{19}$$
现在我们只考虑三体问题。天文学家一直希望能够找到三体问题的简洁解,可是很遗憾,庞加莱已经证明了三体问题的解是混沌的,也就是说任何微小的扰动都有可能造成不可预料的后果(可以形象的比喻为:巴西的一只蝴蝶翅膀的扇动,有可能因此美国的一场龙卷风)。
谈谈“民科”——兼谈如何推翻爱恩斯坦?
By 苏剑林 | 2010-08-11 | 146156位读者 | 引用民科,是“平民科学家”的简称,本来,无论怎么看,这个词都是一个褒义词,代表了一群默默进行科学研究的人,本来,我等天文爱好者都可以用上“民科”这一漂亮词语。然而,“得益于”某些民科(至少在中国是这样的)的狂妄自大,使得“民科”成为了另外一群人的代名词。他们他们从最基础的物理学比如牛顿力学开始,就和正统的物理学分道扬镳。他们使用的专业术语跟正统的物理学都不同。你说东,他说西,以致于民科和专业人士完全不能交流。还有一些民科从易经八卦这些所谓的哲学原理出发,提出一些自以为是的邪乎学说,完全不在物理学的轨道上。这一群人,仿佛自认为自己是救世主,他们就是崭新而又来源已久的新“民科”。由此看,民科和物理学之间存在一个无法沟通的真空。
今天我们都是舟曲人——举国哀悼舟曲遇难同胞
By 苏剑林 | 2010-08-14 | 22712位读者 | 引用与向量的渊源极深的四元数
By 苏剑林 | 2010-08-27 | 32555位读者 | 引用当我们在使用向量进行几何、物理研究的时候,是否曾经想到:向量竟然起源于“数”?
当向量还没有发展起来的时候(虽然“有方向有大小的量”很早就被人们认识),复数已经得到了认可并且有了初步应用。当我们把复数跟向量联系起来时,我们也许会认为,因为复平面表示的复数运算与向量有着相似之处,才把复数跟几何联系起来。然而事实却相反,向量是从对复数乃至一种称为“四元数”的东西的研究中逐渐分离出来的。换句话说,历史中出现过“四元数”与向量分别研究几何的阶段,麦克斯韦(Maxwell) 将四元 数的数量部分和矢量部分分开,作为 实 体处理,作了大量的矢量分析。三维矢量分析的建立,及同四元数的正式分裂是18世纪80年代由Gibbs和Heaviside独立完成的。矢量代数被推广到矢量函数和矢量微积分,由此开始了四元数和矢量分析的争论,最终矢量分析占了上风。因而“四元数”渐渐离开了教科书。不过,“四元数”的一些特殊而巧妙的应用,仍然使我们不至于忘记它。
最近评论