19 Feb

《方程与宇宙》:一种有趣的三体问题坐标

通常来说,选取惯性系为参考系,列出的三体问题方程为
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}$$

历史上出现过很多不同形式的变换,使得三体问题的运动方程有了各样的形式,如Lagrange形式、Jacobi形式、Hamilton形式等。这些变换形式都各有特点,都能够在一定程度上化简三体问题。BoJone在研究摆弄等质量型三体问题的运动方程时,也发现了一种很有趣的变换,在此贴出与大家分享。

设$\vec{R}_1=\vec{r}_1-\vec{r}_2,\vec{R}_2=\vec{r}_2-\vec{r}_3,\vec{R}_3=\vec{r}_3-\vec{r}_1$,则三体问题的运动方程变为

点击阅读全文...

26 Feb

线圈感抗和电容容抗的计算

形形色色的电容

形形色色的电容

学到人教版高二物理选修3-2的同学们,眼前会出现许多新的名词,如楞次定律、自感(电感)、感抗、容抗等等。其中对于电感,在中文维基百科给予的解释为:当电流改变时,因电磁感应而产生抵抗电流改变的电动势(EMF,electromotive force)。电路中的任何电流,会产生磁场,磁场的磁通量又作用于电路上。依据楞次定律,此磁通会借由感应出的电压(反电动势)而倾向于抵抗电流的改变。磁通改变量对电流改变量的比值称为自感,自感通常也就直接称作是这个电路的电感

自感的计算公式为:$U=-L\frac{dI}{dt}$,U是自感电动势,I是电流,负号表示自感电动势反抗原来的电流。L是比例系数,就称为电感,对于同一个线圈来说,L是常数,单位是$V\cdot t//A=\Omega \cdot t$,同时也简记为$H$(亨利)。

点击阅读全文...

26 Feb

有限Vs无限:无穷电荷板的场|平行板电容

学过高中物理的同学都会知道,在经典力学和静电学理论中,万有引力和库仑力有着类似的性质,它们都与距离平方成反比。现在我从引力角度向大家提出一个问题:

一块密度均匀的无限大的平面板,它所产生的引力场是否均匀的?也就是说,板外任意一点的等质量物体受到的引力是否相同?

对于静电力也可以提出类似的问题,只要把引力换成库仑力,把质量换成电荷即可。只要类比有限的情况,我们就会得出结论:场一定是不均匀的!因为力与距离平方成反比,距离不同,受力就不等。果真如此吗?

点击阅读全文...

8 Mar

沐浴问题——调控水温

载入正题之前,不妨闲扯一下BoJone的家...

BoJone在一些文章中已经提到过,我是一个来自农村的孩子,目前我的家也在农村。虽然生活并不能说“贫困”,家中也添置了不少电器,不过一直没有购置的就是洗衣机和热水器。洗衣机嘛,我觉得衣服自己动手洗是很好的,至少不让自己偷懒。至于热水器,因为家在农村,所以能够比较方便地弄到一些柴草,而且稻谷收割完后的桔梗也可以当燃料用,平时烧菜一般都用烧柴草,因此热水器实在没有多大必要。(很遗憾,沼气池没有能够在这里普及起来,大家可不要责怪我排放温室气体哦...^_^)

烧柴草的炉灶

烧柴草的炉灶

既然没有热水器,那只能人工烧水了。往往是烧好一大锅水,洗澡时盛一盆子,然后加水降温,接着就可以洗白白了。本文的问题正是来源于调水温。当水很热时,为了加快降温,我们往往“双管齐下”:一边向盆子注入冷水,一般从盆子放出热水。于是就有了一个问题:水的温度与时间成什么关系?

点击阅读全文...

20 Mar

【福岛核电站】“最坏情况”有多坏?

Fukushima

Fukushima

福岛核电站已经好久没给我们带来好消息了,各种稀奇古怪的故障一个接着一个,越来越多的人也在考虑“最坏情况”的可能了,这次的碘盐恐慌似乎就是被所谓的“最坏情况”吓出来的。那么最坏到底能有多坏呢?

完整的评估太过复杂,咱就从比较简单的,也是目前我们很多人最关心的问题说起:放射性物质的泄露对海水最大到底能有多大的影响。这里我们主要拿这个风头正紧的碘 131 来开刀。

点击阅读全文...

4 Apr

变分与理论力学略览

拉格朗日

拉格朗日

BoJone在之前的《自然极值》系列已经花了一定篇幅来讲述“极值”在自然界中是多么的普遍,它能够引导我们进行某些问题的思考,从而获得简单快捷的解答。接下来,我要说的一个更加令人惊讶的“事实”:“极值”不仅仅在某些数学或物理问题上给予我们创造性的思考,它甚至构建了整个经典力学乃至于整个物理学!这不是夸大其辞,这是物理学中被称为“最小作用量原理”的一个原理,很多物理学家(如费恩曼)被它深深吸引着,甚至认为它就是“上帝创造世界的终极公式”!(关于做小作用量原理,大家不妨看一下范翔所写的《最小作用量原理与物理之美》系列文章)

话说在18世纪,欧拉拉格朗日开创了一条独特的道路,即用变分法来研究经典力学,从而使经典力学焕发出了新的活力,也由此衍生出了一个叫“理论力学”或“分析力学”的分支。用变分法研究力学有很多的好处,变分的对象一般都是标量函数,我们只需要写出动力系统的动能与势能表达式,就可以进行一系列的研究,比如列出质点的运动方程、判断平衡点的稳定性、求周期轨道等等(由于BoJone对理论力学研究还不够深入,无法举太多例子,但请相信,其作用远远不止这些),省去了不少繁琐的矢量性分析,这些都是在变分法发明前难以研究的。

点击阅读全文...

5 Apr

重提“旋转弹簧伸长”问题(变分解法)

感谢Awank-Newton读者的来信,本文于2013.01.30作了修正,主要是弹性势能的正负号问题。之前连续犯了两个错误,导致得出了正确答案。现在已经修正。参考《平衡态公理的修正与思考》

在下面的两篇文章中,BoJone已经介绍了这个“旋转弹簧伸长”的问题,并从两个角度提供了两种解答方法。前者列出了一道积分方程,然后再转变为微分方程来解;后者直接从弹性力学的角度来列出一道二阶微分方程,两者殊途同归。
http://kexue.fm/archives/782/

http://kexue.fm/archives/826/

今天,再经过一段时间的变分法涉猎后,BoJone尝试从变分的角度(总能量最小)来给出一种新的解法。同样设r为旋转达到平衡后弹簧上一点到旋转中心的距离,该点的线密度为$\lambda =\lambda (r)$,该点到中心的弹簧质量为$m=m(r)$,旋转前的长度为$l_0$,旋转平衡后的长度为$l_1$。由于弹簧旋转后已经达到了平衡状态,由平衡态公理(参看《自然极值》系列),平衡意味着总能量“动能-势能”取极值。

点击阅读全文...

16 Apr

《教材如何写》:我们需要怎样的数学教育?

转载自:matrix67.com

注:这篇文章里有很多个人观点,带有极强的主观色彩。其中一些思想不见得是正确的,有一些话也是我没有资格说的。我只是想和大家分享一下自己的一些想法。大家记得保留自己的见解。也请大家转载时保留这段话。

我不是一个数学家。我甚至连数学专业的人都不是。我是一个纯粹打酱油的数学爱好者,只是比一般的爱好者更加执着,更加疯狂罢了。初中、高中一路保送,大学不在数学专业,这让我可以不以考试为目的地学习自己感兴趣的数学知识,让我对数学有如此浓厚的兴趣。从 05 年建立这个 Blog 以来,每看到一个惊人的结论或者美妙的证明,我再忙都会花时间把它记录下来,生怕自己忘掉。不过,我深知,这些令人拍案叫绝的雕虫小技其实根本谈不上数学之美,数学真正博大精深的思想我恐怕还不曾有半点体会。

我多次跟人说起,我的人生理想就是,希望有一天能学完数学中的各个分支,然后站在一个至高点,俯瞰整个数学领域,真正体会到数学之美。但是,想要实现这一点是很困难的。最大的困难就是缺少一个学习数学的途径。看课本?这就是我今天想说的——课本极其不靠谱。

点击阅读全文...