4 Mar

平面曲线的曲率的复数表示

开学已经是第二周了,我的《微分几何》也上课两周了,进度比较慢,现在才讲到平面曲线的曲率。在平面曲线$\boldsymbol{t}(t)=(x(t),y(t))$某点上可以找出单位切向量。
$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$
其中$ds^2 =dx^2+dy^2$,将这个向量逆时针旋转90度之后,就可以定义相应的单位法向量$\boldsymbol{n}$,即$\boldsymbol{t}\cdot\boldsymbol{n}=0$。

常规写法

让我们用弧长$s$作为参数来描述曲线方程,$\boldsymbol{t}(s)=(x(s),y(s))$,函数上的一点表示对$s$求导。那么我们来考虑$\dot{\boldsymbol{t}}$,由于$\boldsymbol{t}^2=1$,对s求导得到
$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$

点击阅读全文...

14 Feb

情人节?元宵节!

元宵节快乐

元宵节快乐

今天是2014年2月14日,农历正月十五,传统的元宵佳节,祝大家元宵节快乐!

不过虽说是元宵佳节,但是我们这里的习俗却没有闹元宵的,好像在我们这里元宵节就像普通的初一十五一样,惯例地上个香,祭下神而已,唯一特别的地方就是早上妈妈放了个鞭炮,什么汤圆、灯笼、灯谜都没有呢。不过这并不妨碍我欣赏元宵节,印象里好像上学以来这是第一次在家过元宵节。幸好没有参加美国数学建模,不然又少了半个月的假期,少了一次难得的元宵,而多了得不偿失的劳动...

今天也是西方的情人节,但在这里我只强调元宵节。首要原因却不是我目前单身(当然这也是原因之一^_^),而是元宵节是中国传统节日。我这个人有个奇怪的“嗜好”,反正越潮流的东西我越不跟。于是乎,既然那么多人都庆祝着西方节日(什么万圣节、圣诞节、情人节),那么我就偏不凑这个热闹。我又想起了去年圣诞前夕有个师弟过来向我们宣传和推销圣诞的东西,被我批了一顿,我直言说“你为什么不等元旦再来?”。我想,如果哪一天,我也有机会庆祝情人节,我也只是庆祝中国的情人节,总感觉中国的情人节美多了:七夕,Qixi Festival,多美!不论是典故还是习俗都更美~

点击阅读全文...

15 Mar

不求珍馐百味,但愿开水白菜

开水白菜 (1)

开水白菜 (1)

如果要用做菜来比喻人生的话,我觉得,人生最高的境界之一便是开水白菜。

点击阅读全文...

11 Jun

用PyPy提高Python脚本执行效率

《两百万前素数之和与前两百万素数之和》中,我们用Python求了前两百万的素数和以及两百万前的素数和,并且得到了在Python 3.3中的执行时间如下:

两百万前的素数之和:
142913828922
time: 2.4048174478605646

前两百万的素数之和:
31381137530481
time: 46.75734807838953

于是想办法提高python脚本的执行效率,我觉得在算法方面,优化空间已经比较小了,于是考虑执行器上的优化。在搜索的无意间我看到了一个名词——Psyco!这是python的一个外部模块,导入后可以加快.py脚本的执行。网上也有《用 Psyco 让 Python 运行得像 C一样快》、《利用 psyco 让 Python 程序执行更快》之类的文章,说明Psyco确实是一个可行的选择,于是就跃跃欲试了,后来了解到Psyco在2012年已经停止开发,只支持到Python 2.4版本,目前它由 PyPy所接替。于是我就下载了PyPy

点击阅读全文...

21 Apr

数独的自动推理

写在前面:作为离散数学的实验作业,我选择了研究数独。经过测试发现,数独的自动推理还不算难,我把两种常规的推理思路转化为了计算机代码,并结合了随机性推导,得到了一个解题能力还不错的数独程序。事实上,本文的程序还可以进一步优化,以得到更高能力的数独程序(只需要整理一下代码,加上几个循环和判断即可),但是我实在太懒,没有动力继续弄下去了,就这样先和大家分享吧。最后,笔者认为本文的算法是更接近我们的思维的算法。

数独简介

历史

相传数独源起于拉丁方阵(Latin Square),1970年代在美国发展,改名为数字拼图(Number Place)、之后流传至日本并发扬光大,以数学智力游戏智力拼图游戏发表。在1984年一本游戏杂志《パズル通信ニコリ》正式把它命名为数独,意思是“在每一格只有一个数字”。后来一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould)在1997年3月到日本东京旅游时,无意中发现了。他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上,使这个游戏很快在全世界流行。

台湾于2005年5月由“中国时报”首度引进, 且每日连载, 亦造成很大的回响。台湾数独发展协会(Taiwan Sudoku Association, 简称 TSA)亦为世界解谜联盟会员。香港是在2005年7月30日由AM730在创刊时引入数独。中国大陆是在2007年2月28日正式引入数独。北京晚报智力休闲数独俱乐部(数独联盟前身)在新闻大厦举行加入世界谜题联合会的颁证仪式,成为世界谜题联合会的39个成员之一。(引用自“中文维基百科”: http://zh.wikipedia.org/wiki/数独

点击阅读全文...

25 Apr

当概率遇上复变:解析概率

每当看到数学的两个看似毫不相关的分支巧妙地联系了起来时,我总会为数学的神奇美丽惊叹不已。在很久以前,当我看到通过生成函数法把数论问题与复变函数方法结合起来,衍生出一门奇妙的“解析数论”时,我就惊叹过生成函数法的漂亮!可惜,一直都没有好好写整理这些内容。今天,当我在看李政道先生的《物理学中的数学方法》时,看到他把复变函数跟随机游动如鬼斧神工般了起来,再次让我拍案叫绝。最后实在压抑不住心中的激动,在此写写概率论和生成函数的事情。

数论与复变函数结合,就生成了一门“解析数论”,按照这个说法,概率与复变函数结合,应该就会有一门“解析概率”,但是我在网上搜索的时候,并没有发现这个名词的存在。经过如此,本文还是试用了这个名词。虽然这个名词没有流行,但事实上,解析概率的方法并不算新,它可以追溯到伟大的数学家拉普拉斯以及他的著作《分析概率论》中。尽管如此,这种巧妙漂亮的方法似乎没有得到大家应该有的充分的认识。

我觉得,即使作为一个简洁的计算工具,生成函数法这个美丽的技巧,也应该尽可能为科学爱好者所知,更不用说数学专业的朋友了。

点击阅读全文...

15 Aug

从费马大定理谈起(一):背景简介

费马大定理,也叫做费马最后定理(Fermat Last Theorem),说的是

设$n$是大于2的正整数,则不定方程$x^n+y^n=z^n$没有全不为0的整数解。

Pierre_de_Fermat

Pierre_de_Fermat

稍微阅读过数学史的朋友应该知道,该定理首先于1637年由法国业余数学家费马(Pierre de Fermat)在阅读丢番图《算术》拉丁文译本时写在第11卷第8命题旁写道。他并附加道:“我发现了一个非常漂亮的证明,但这里没有足够的空间可容纳得下。”根据后世的考证,费马或许有办法证明n=3,4,5的情形,但不大可能给出一般性的证明,因为在20世纪90年代,怀尔斯用了130页的纸张,而且用到了复杂的现代理论,才完全证明了费马大定理。所以费马当时的这一断言,更可能只是一个归纳猜测。

点击阅读全文...

2 Jul

[追溯]封装界传奇人物

转载理由:现在的deepin和ylmf(已经改为StartOs)都已经在制作自己的Linux,而当初它们都是制作GhostXp的大家。我的初中,即2009年以前,是GhostXP流行的时代,而我当时也加入了这一行列中,发表过一些GhostXP的作品。后来随着时代的发展,XP也就慢慢退出了舞台。我也就随之退出了这个舞台,也因此得以专注科学。但是,几乎所有我的电脑知识,都积累于那个时期,因为为了完成一个系统的制作和推广,需要懂得的电脑技术很多很多,我也得到了充分的锻炼。下面列举的一些人,都是当年GhostXP界的神话人物,有些我并不认识,但其名在当时就如雷贯耳;有些人在当时还十分幸运地加上了他们的QQ。这篇文章实际上已经是很久已经的了,但还是值得回味过去的时间,以此为我的初中时代留下一些回忆。

点击阅读全文...