15 Mar

从最大似然到EM算法:一致的理解方式

最近在思考NLP的无监督学习和概率图相关的一些内容,于是重新把一些参数估计方法理了一遍。在深度学习中,参数估计是最基本的步骤之一了,也就是我们所说的模型训练过程。为了训练模型就得有个损失函数,而如果没有系统学习过概率论的读者,能想到的最自然的损失函数估计是平均平方误差,它也就是对应于我们所说的欧式距离。而理论上来讲,概率模型的最佳搭配应该是“交叉熵”函数,它来源于概率论中的最大似然函数。

最大似然

合理的存在

何为最大似然?哲学上有句话叫做“存在就是合理的”,最大似然的意思是“存在就是最合理的”。具体来说,如果事件$X$的概率分布为$p(X)$,如果一次观测中具体观测到的值分别为$X_1,X_2,\dots,X_n$,并假设它们是相互独立,那么
$$\mathcal{P} = \prod_{i=1}^n p(X_i)\tag{1}$$
是最大的。如果$p(X)$是一个带有参数$\theta$的概率分布式$p_{\theta}(X)$,那么我们应当想办法选择$\theta$,使得$\mathcal{L}$最大化,即
$$\theta = \mathop{\text{argmax}}_{\theta} \mathcal{P}(\theta) = \mathop{\text{argmax}}_{\theta}\prod_{i=1}^n p_{\theta}(X_i)\tag{2}$$

点击阅读全文...

18 Apr

最小熵原理(一):无监督学习的原理

话在开头

在深度学习等端到端方案已经逐步席卷NLP的今天,你是否还愿意去思考自然语言背后的基本原理?我们常说“文本挖掘”,你真的感受到了“挖掘”的味道了吗?

无意中的邂逅

前段时间看了一篇关于无监督句法分析的文章,继而从它的参考文献中发现了论文《Redundancy Reduction as a Strategy for Unsupervised Learning》,这篇论文介绍了如何从去掉空格的英文文章中将英文单词复原。对应到中文,这不就是词库构建吗?于是饶有兴致地细读了一番,发现论文思路清晰、理论完整、结果漂亮,让人赏心悦目。

尽管现在看来,这篇论文的价值不是很大,甚至其结果可能已经被很多人学习过了,但是要注意:这是一篇1993年的论文!在PC机还没有流行的年代,就做出了如此前瞻性的研究。虽然如今深度学习流行,NLP任务越做越复杂,这确实是一大进步,但是我们对NLP原理的真正了解,还不一定超过几十年前的前辈们多少。

这篇论文是通过“去冗余”(Redundancy Reduction)来实现无监督地构建词库的,从信息论的角度来看,“去冗余”就是信息熵的最小化。无监督句法分析那篇文章也指出“信息熵最小化是无监督的NLP的唯一可行的方案”。我进而学习了一些相关资料,并且结合自己的理解思考了一番,发现这个评论确实是耐人寻味。我觉得,不仅仅是NLP,信息熵最小化很可能是所有无监督学习的根本

点击阅读全文...

18 May

简明条件随机场CRF介绍(附带纯Keras实现)

笔者去年曾写过博文《果壳中的条件随机场(CRF In A Nutshell)》,以一种比较粗糙的方式介绍了一下条件随机场(CRF)模型。然而那篇文章显然有很多不足的地方,比如介绍不够清晰,也不够完整,还没有实现,在这里我们重提这个模型,将相关内容补充完成。

本文是对CRF基本原理的一个简明的介绍。当然,“简明”是相对而言中,要想真的弄清楚CRF,免不了要提及一些公式,如果只关心调用的读者,可以直接移到文末。

图示

按照之前的思路,我们依旧来对比一下普通的逐帧softmax和CRF的异同。

逐帧softmax

CRF主要用于序列标注问题,可以简单理解为是给序列中的每一帧都进行分类,既然是分类,很自然想到将这个序列用CNN或者RNN进行编码后,接一个全连接层用softmax激活,如下图所示

逐帧softmax并没有直接考虑输出的上下文关联

逐帧softmax并没有直接考虑输出的上下文关联

点击阅读全文...

7 Jun

python简单实现gillespie模拟

由于专业需求,需要做主方程的随机模拟。在网上并没有找到适合的Python实现,遂自己写了一个,分享一下源码。至于gillespie算法本身就不介绍了,有需要的读者自然会懂,没需要的读者不建议去懂。

源码

其实基本的gillespie模拟算法很简单,也很好实现,下面就是一个参考例子:

点击阅读全文...

13 Jun

“噪声对比估计”杂谈:曲径通幽之妙

说到噪声对比估计,或者“负采样”,大家可能立马就想到了Word2Vec。事实上,它的含义远不止于此,噪音对比估计(NCE, Noise Contrastive Estimation)是一个迂回但却异常精美的技巧,它使得我们在没法直接完成归一化因子(也叫配分函数)的计算时,就能够去估算出概率分布的参数。本文就让我们来欣赏一下NCE的曲径通幽般的美妙。

注:由于出发点不同,本文所介绍的“噪声对比估计”实际上更偏向于所谓的“负采样”技巧,但两者本质上是一样的,在此不作区分。

问题起源

问题的根源是难分难舍的指数概率分布~

指数族分布

在很多问题中都会出现指数族分布,即对于某个变量$\boldsymbol{x}$的概率$p(\boldsymbol{x})$,我们将其写成
$$p(\boldsymbol{x}) = \frac{e^{G(\boldsymbol{x})}}{Z}\tag{1}$$
其中$G(\boldsymbol{x})$是$\boldsymbol{x}$的某个“能量”函数,而$Z=\sum_{\boldsymbol{x}} e^{G(\boldsymbol{x})}$则是归一化常数,也叫配分函数。这种分布也称为“玻尔兹曼分布”。

点击阅读全文...

23 Jun

貌离神合的RNN与ODE:花式RNN简介

本来笔者已经决心不玩RNN了,但是在上个星期思考时忽然意识到RNN实际上对应了ODE(常微分方程)的数值解法,这为我一直以来想做的事情——用深度学习来解决一些纯数学问题——提供了思路。事实上这是一个颇为有趣和有用的结果,遂介绍一翻。顺便地,本文也涉及到了自己动手编写RNN的内容,所以本文也可以作为编写自定义的RNN层的一个简单教程

注:本文并非前段时间的热点“神经ODE”的介绍(但有一定的联系)。

RNN基本

什么是RNN?

众所周知,RNN是“循环神经网络(Recurrent Neural Network)”,跟CNN不同,RNN可以说是一类模型的总称,而并非单个模型。简单来讲,只要是输入向量序列$(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_T)$,输出另外一个向量序列$(\boldsymbol{y}_1,\boldsymbol{y}_2,\dots,\boldsymbol{y}_T)$,并且满足如下递归关系
$$\boldsymbol{y}_t=f(\boldsymbol{y}_{t-1}, \boldsymbol{x}_t, t)\tag{1}$$
的模型,都可以称为RNN。也正因为如此,原始的朴素RNN,还有改进的如GRU、LSTM、SRU等模型,我们都称为RNN,因为它们都可以作为上式的一个特例。还有一些看上去与RNN没关的内容,比如前不久介绍的CRF的分母的计算,实际上也是一个简单的RNN。

说白了,RNN其实就是递归计算

点击阅读全文...

27 Jun

从动力学角度看优化算法(一):从SGD到动量加速

在这个系列中,我们来关心优化算法,而本文的主题则是SGD(stochastic gradient descent,随机梯度下降),包括带Momentum和Nesterov版本的。对于SGD,我们通常会关心的几个问题是:

SGD为什么有效?
SGD的batch size是不是越大越好?
SGD的学习率怎么调?
Momentum是怎么加速的?
Nesterov为什么又比Momentum稍好?
...

这里试图从动力学角度分析SGD,给出上述问题的一些启发性理解。

梯度下降

既然要比较谁好谁差,就需要知道最好是什么样的,也就是说我们的终极目标是什么?

训练目标分析

假设全部训练样本的集合为$\boldsymbol{S}$,损失度量为$L(\boldsymbol{x};\boldsymbol{\theta})$,其中$\boldsymbol{x}$代表单个样本,而$\boldsymbol{\theta}$则是优化参数,那么我们可以构建损失函数
$$L(\boldsymbol{\theta}) = \frac{1}{|\boldsymbol{S}|}\sum_{\boldsymbol{x}\in\boldsymbol{S}} L(\boldsymbol{x};\boldsymbol{\theta})\tag{1}$$
训练的终极目标,则是找到$L(\boldsymbol{\theta})$的一个全局最优点(这里的最优是“最小”的意思)。

点击阅读全文...

7 Jul

从SamplePairing到mixup:神奇的正则项

SamplePairingmixup是两种一脉相承的图像数据扩增手段,它们看起来很不合理,而操作则非常简单,但结果却非常漂亮:在多个图像分类任务中都表明它们能提高最终分类模型的精度。

某些读者会困惑于一个问题:为什么如此不合理的数据扩增手段,能得到如此好的效果?而本文则要表明,它们看起来是一种数据扩增方法,事实上它们是对模型的一种正则化方案。正如周星驰的电影《国产凌凌漆》的一句经典台词:

表面上看这是一个吹风机,其实它是一个刮胡刀。

数据扩增

让我们从数据扩增说起。数据扩增是指我们在对原始数据做一些简单的变换后,它们对应的类别往往不会变化,所以我们可以在原来数据的基础上,“造”出更多的数据来。比如一幅小狗的照片,将它水平翻转、轻微的旋转、裁剪、平移等操作后,我们认为它的类别没有变化,它还是原来的那只狗。这样一来,从一个样本我们可以衍生出好几个样本,从而增加了训练样本量。

狗

旋转的狗

旋转的狗

点击阅读全文...