WGAN-div:一个默默无闻的WGAN填坑者
By 苏剑林 | 2018-11-07 | 158405位读者 | 引用今天我们来谈一下Wasserstein散度,简称“W散度”。注意,这跟Wasserstein距离(Wasserstein distance,简称“W距离”,又叫Wasserstein度量、Wasserstein metric)是不同的两个东西。
本文源于论文《Wasserstein Divergence for GANs》,论文中提出了称为WGAN-div的GAN训练方案。这是一篇我很是欣赏却默默无闻的paper,我只是找文献时偶然碰到了它。不管英文还是中文界,它似乎都没有流行起来,但是我感觉它是一个相当漂亮的结果。
如果读者需要入门一下WGAN的相关知识,不妨请阅读拙作《互怼的艺术:从零直达WGAN-GP》。
WGAN
我们知道原始的GAN(SGAN)会有可能存在梯度消失的问题,因此WGAN横空出世了。
W距离
WGAN引入了最优传输里边的W距离来度量两个分布的距离:
\begin{equation}W_c[\tilde{p}(x), q(x)] = \inf_{\gamma\in \Pi(\tilde{p}(x), q(x))} \mathbb{E}_{(x,y)\sim \gamma}[c(x,y)] \end{equation}
这里的$\tilde{p}(x)$是真实样本的分布,$q(x)$是伪造分布,$c(x,y)$是传输成本,论文中用的是$c(x,y)=\Vert x-y\Vert$;而$\gamma\in \Pi(\tilde{p}(x), q(x))$的意思是说:$\gamma$是任意关于$x, y$的二元分布,其边缘分布则为$\tilde{p}(x)$和$q(y)$。直观来看,$\gamma$描述了一个运输方案,而$c(x,y)$则是运输成本,$W_c[\tilde{p}(x), q(x)]$就是说要找到成本最低的那个运输方案所对应的成本作为分布度量。
不用L约束又不会梯度消失的GAN,了解一下?
By 苏剑林 | 2018-11-20 | 172601位读者 | 引用不知道从什么时候开始,我发现我也掉到了GAN的大坑里边了,唉,争取早日能跳出来...
这篇博客介绍的是我最近提交到arxiv的一个关于GAN的新框架,里边主要介绍了一种对概率散度的新理解,并且基于这种理解推导出了一个新的GAN。整篇文章比较偏理论,对这个GAN的相关性质都做了完整的论证,自认为是一个理论完备的结果。
文章链接:https://papers.cool/arxiv/1811.07296
先摆结论:
1、论文提供了一种分析和构造概率散度的直接思路,从而简化了构建新GAN框架的过程。
2、推导出了一个称为GAN-QP的GAN框架$\eqref{eq:gan-gp-gd}$,这个GAN不需要像WGAN那样的L约束,又不会有SGAN的梯度消失问题,实验表明它至少有不逊色于、甚至优于WGAN的表现。
论文的实验最大做到了512x512的人脸生成(CelebA HQ),充分表明了模型的有效性(效果不算完美,但是模型特别简单)。有兴趣的朋友,欢迎继续阅读下去。
从变分编码、信息瓶颈到正态分布:论遗忘的重要性
By 苏剑林 | 2018-11-27 | 159675位读者 | 引用这是一篇“散文”,我们来谈一下有着千丝万缕联系的三个东西:变分自编码器、信息瓶颈、正态分布。
众所周知,变分自编码器是一个很经典的生成模型,但实际上它有着超越生成模型的含义;而对于信息瓶颈,大家也许相对陌生一些,然而事实上信息瓶颈在去年也热闹了一阵子;至于正态分布,那就不用说了,它几乎跟所有机器学习领域都有或多或少的联系。
那么,当它们三个碰撞在一块时,又有什么样的故事可说呢?它们跟“遗忘”又有什么关系呢?
变分自编码器
在本博客你可以搜索到若干几篇介绍VAE的文章。下面简单回顾一下。
理论形式回顾
简单来说,VAE的优化目标是:
\begin{equation}KL(\tilde{p}(x)p(z|x)\Vert q(z)q(x|z))=\iint \tilde{p}(x)p(z|x)\log \frac{\tilde{p}(x)p(z|x)}{q(x|z)q(z)} dzdx\end{equation}
其中$q(z)$是标准正态分布,$p(z|x),q(x|z)$是条件正态分布,分别对应编码器、解码器。具体细节可以参考《变分自编码器(二):从贝叶斯观点出发》。
最小熵原理(四):“物以类聚”之从图书馆到词向量
By 苏剑林 | 2018-12-02 | 95582位读者 | 引用从第一篇看下来到这里,我们知道所谓“最小熵原理”就是致力于降低学习成本,试图用最小的成本完成同样的事情。所以整个系列就是一个“偷懒攻略”。那偷懒的秘诀是什么呢?答案是“套路”,所以本系列又称为“套路宝典”。
本篇我们介绍图书馆里边的套路。
先抛出一个问题:词向量出现在什么时候?是2013年Mikolov的Word2Vec?还是是2003年Bengio大神的神经语言模型?都不是,其实词向量可以追溯到千年以前,在那古老的图书馆中...
走进图书馆
图书馆里有词向量?还是千年以前?在哪本书?我去借来看看。
放书的套路
其实不是哪本书,而是放书的套路。
很明显,图书馆中书的摆放是有“套路”的:它们不是随机摆放的,而是分门别类地放置的,比如数学类放一个区,文学类放一个区,计算机类也放一个区;同一个类也有很多子类,比如数学类中,数学分析放一个子区,代数放一个子区,几何放一个子区,等等。读者是否思考过,为什么要这么分类放置?分类放置有什么好处?跟最小熵又有什么关系?
“让Keras更酷一些!”:随意的输出和灵活的归一化
By 苏剑林 | 2019-01-27 | 103829位读者 | 引用继续“让Keras更酷一些!”系列,让Keras来得更有趣些吧~
这次围绕着Keras的loss、metric、权重和进度条进行展开。
可以不要输出
一般我们用Keras定义一个模型,是这样子的:
x_in = Input(shape=(784,))
x = x_in
x = Dense(100, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
model = Model(x_in, x)
model.compile(loss='categorical_crossentropy ',
optimizer='adam',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
从Wasserstein距离、对偶理论到WGAN
By 苏剑林 | 2019-01-20 | 215022位读者 | 引用2017年的时候笔者曾写过博文《互怼的艺术:从零直达WGAN-GP》,从一个相对通俗的角度来介绍了WGAN,在那篇文章中,WGAN更像是一个天马行空的结果,而实际上跟Wasserstein距离没有多大关系。
在本篇文章中,我们再从更数学化的视角来讨论一下WGAN。当然,本文并不是纯粹地讨论GAN,而主要侧重于Wasserstein距离及其对偶理论的理解。本文受启发于著名的国外博文《Wasserstein GAN and the Kantorovich-Rubinstein Duality》,内容跟它大体上相同,但是删除了一些冗余的部分,对不够充分或者含糊不清的地方作了补充。不管怎样,在此先对前辈及前辈的文章表示致敬。
(注:完整理解本文,应该需要多元微积分、概率论以及线性代数等基础知识。还有,本文确实长,数学公式确实多,但是,真的不复杂、不难懂,大家不要看到公式就吓怕了~)
O-GAN:简单修改,让GAN的判别器变成一个编码器!
By 苏剑林 | 2019-03-06 | 251818位读者 | 引用本文来给大家分享一下笔者最近的一个工作:通过简单地修改原来的GAN模型,就可以让判别器变成一个编码器,从而让GAN同时具备生成能力和编码能力,并且几乎不会增加训练成本。这个新模型被称为O-GAN(正交GAN,即Orthogonal Generative Adversarial Network),因为它是基于对判别器的正交分解操作来完成的,是对判别器自由度的最充分利用。
“让Keras更酷一些!”:分层的学习率和自由的梯度
By 苏剑林 | 2019-03-10 | 101239位读者 | 引用高举“让Keras更酷一些!”大旗,让Keras无限可能~
今天我们会用Keras做到两件很重要的事情:分层设置学习率和灵活操作梯度。
首先是分层设置学习率,这个用途很明显,比如我们在fine tune已有模型的时候,有些时候我们会固定一些层,但有时候我们又不想固定它,而是想要它以比其他层更低的学习率去更新,这个需求就是分层设置学习率了。对于在Keras中分层设置学习率,网上也有一定的探讨,结论都是要通过重写优化器来实现。显然这种方法不论在实现上还是使用上都不友好。
然后是操作梯度。操作梯度一个最直接的例子是梯度裁剪,也就是把梯度控制在某个范围内,Keras内置了这个方法。但是Keras内置的是全局的梯度裁剪,假如我要给每个梯度设置不同的裁剪方式呢?甚至我有其他的操作梯度的思路,那要怎么实施呢?不会又是重写优化器吧?
本文就来为上述问题给出尽可能简单的解决方案。
最近评论