Keras:Tensorflow的黄金标准
By 苏剑林 | 2019-11-06 | 75686位读者 | 引用这两周投入了比较多的精力去做bert4keras的开发,除了一些API的规范化工作外,其余的主要工作量是构建预训练部分的代码。在昨天,预训练代码基本构建完毕,并同时在TPU/多GPU环境下测试通过,从而有志(有算力)改进预训练模型的同学多了一个选择。——这可能是目前最为清晰易懂的bert及其预训练代码。
预训练代码链接: https://github.com/bojone/bert4keras/tree/master/pretraining
经过这两周的开发(填坑),笔者的最大感想就是:Keras已经成为了tensorflow的黄金标准了。只要你的代码按照Keras的标准规范写,那可以轻松迁移到tf.keras中去,继而可以非常轻松地在TPU或多GPU环境下训练,真正的几乎是一劳永逸。相反,如果你的写法过于灵活,包括像笔者之前介绍的很多“移花接木”式的Keras技巧,就可能会有不少问题,甚至可能出现的一种情况是:就算你已经在多GPU上跑通了,在TPU上你也死活调不通。
从DCGAN到SELF-MOD:GAN的模型架构发展一览
By 苏剑林 | 2019-04-19 | 80091位读者 | 引用JoSE:球面上的词向量和句向量
By 苏剑林 | 2019-11-11 | 67587位读者 | 引用这篇文章介绍一个发表在NeurIPS 2019的做词向量和句向量的模型JoSE(Joint Spherical Embedding),论文名字是《Spherical Text Embedding》。JoSE模型思想上和方法上传承自Doc2Vec,评测结果更加漂亮,但写作有点故弄玄虚之感。不过笔者决定写这篇文章,是因为觉得里边的某些分析过程有点意思,可能会对一般的优化问题都有些参考价值。
优化目标
在思想上,这篇文章基本上跟Doc2Vec是一致的:为了训练句向量,把句子用一个id表示,然后把它也当作一个词,跟句内所有的词都共现,最后训练一个Skip Gram模型,训练的方式都是基于负采样的。跟Doc2Vec不一样的是,JoSE将全体向量的模长都归一化了(也就是只考虑单位球面上的向量),然后训练目标没有用交叉熵,而是用hinge loss:
\begin{equation}\max(0, m - \cos(\boldsymbol{u}, \boldsymbol{v}) - \cos(\boldsymbol{u}, \boldsymbol{d}) + \cos(\boldsymbol{u}', \boldsymbol{v}) + \cos(\boldsymbol{u}', \boldsymbol{d})\label{eq:loss}\end{equation}
“让Keras更酷一些!”:中间变量、权重滑动和安全生成器
By 苏剑林 | 2019-04-28 | 100578位读者 | 引用继续“让Keras更酷一些”之旅。
今天我们会用Keras实现灵活地输出任意中间变量,还有无缝地进行权重滑动平均,最后顺便介绍一下生成器的进程安全写法。
首先是输出中间变量。在自定义层时,我们可能希望查看中间变量,这些需求有些是比较容易实现的,比如查看中间某个层的输出,只需要将截止到这个层的部分模型保存为一个新模型即可,但有些需求是比较困难的,比如在使用Attention层时我们可能希望查看那个Attention矩阵的值,如果用构建新模型的方法则会非常麻烦。而本文则给出一种简单的方法,彻底满足这个需求。
接着是权重滑动平均。权重滑动平均是稳定、加速模型训练甚至提升模型效果的一种有效方法,很多大型模型(尤其是GAN)几乎都用到了权重滑动平均。一般来说权重滑动平均是作为优化器的一部分,所以一般需要重写优化器才能实现它。本文介绍一个权重滑动平均的实现,它可以无缝插入到任意Keras模型中,不需要自定义优化器。
至于生成器的进程安全写法,则是因为Keras读取生成器的时候,用到了多进程,如果生成器本身也包含了一些多进程操作,那么可能就会导致异常,所以需要解决这个这个问题。
从动力学角度看优化算法(四):GAN的第三个阶段
By 苏剑林 | 2019-05-03 | 95391位读者 | 引用在对GAN的学习和思考过程中,我发现我不仅学习到了一种有效的生成模型,而且它全面地促进了我对各种模型各方面的理解,比如模型的优化和理解视角、正则项的意义、损失函数与概率分布的联系、概率推断等等。GAN不单单是一个“造假的玩具”,而是具有深刻意义的概率模型和推断方法。
作为事后的总结,我觉得对GAN的理解可以粗糙地分为三个阶段:
1、样本阶段:在这个阶段中,我们了解了GAN的“鉴别者-造假者”诠释,懂得从这个原理出发来写出基本的GAN公式(如原始GAN、LSGAN),比如判别器和生成器的loss,并且完成简单GAN的训练;同时,我们知道GAN有能力让图片更“真”,利用这个特性可以把GAN嵌入到一些综合模型中。
2、分布阶段:在这个阶段中,我们会从概率分布及其散度的视角来分析GAN,典型的例子是WGAN和f-GAN,同时能基本理解GAN的训练困难问题,比如梯度消失和mode collapse等,甚至能基本地了解变分推断,懂得自己写出一些概率散度,继而构造一些新的GAN形式。
3、动力学阶段:在这个阶段中,我们开始结合优化器来分析GAN的收敛过程,试图了解GAN是否能真的达到理论的均衡点,进而理解GAN的loss和正则项等因素如何影响的收敛过程,由此可以针对性地提出一些训练策略,引导GAN模型到达理论均衡点,从而提高GAN的效果。
级联抑制:提升GAN表现的一种简单有效的方法
By 苏剑林 | 2019-12-01 | 33619位读者 | 引用昨天刷arxiv时发现了一篇来自星星韩国的论文,名字很直白,就叫做《A Simple yet Effective Way for Improving the Performance of GANs》。打开一看,发现内容也很简练,就是提出了一种加强GAN的判别器的方法,能让GAN的生成指标有一定的提升。
作者把这个方法叫做Cascading Rejection,我不知道咋翻译,扔到百度翻译里边显示“级联抑制”,想想看好像是有这么点味道,就暂时这样叫着了。介绍这个方法倒不是因为它有多强大,而是觉得它的几何意义很有趣,而且似乎有一定的启发性。
正交分解
GAN的判别器一般是经过多层卷积后,通过flatten或pool得到一个固定长度的向量$\boldsymbol{v}$,然后再与一个权重向量$\boldsymbol{w}$做内积,得到一个标量打分(先不考虑偏置项和激活函数等末节):
\begin{equation}D(\boldsymbol{x})=\langle \boldsymbol{v},\boldsymbol{w}\rangle\end{equation}
也就是说,用$\boldsymbol{v}$作为输入图片的表征,然后通过$\boldsymbol{v}$和$\boldsymbol{w}$的内积大小来判断出这个图片的“真”的程度。
Self-Orthogonality Module:一个即插即用的核正交化模块
By 苏剑林 | 2020-01-12 | 53741位读者 | 引用前些天刷Arxiv看到新文章《Self-Orthogonality Module: A Network Architecture Plug-in for Learning Orthogonal Filters》(下面简称“原论文”),看上去似乎有点意思,于是阅读了一番,读完确实有些收获,在此记录分享一下。
给全连接或者卷积模型的核加上带有正交化倾向的正则项,是不少模型的需求,比如大名鼎鼎的BigGAN就加入了类似的正则项。而这篇论文则引入了一个新的正则项,笔者认为整个分析过程颇为有趣,可以一读。
为什么希望正交?
在开始之前,我们先约定:本文所出现的所有一维向量都代表列向量。那么,现在假设有一个$d$维的输入样本$\boldsymbol{x}\in \mathbb{R}^d$,经过全连接或卷积层时,其核心运算就是:
\begin{equation}\boldsymbol{y}^{\top}=\boldsymbol{x}^{\top}\boldsymbol{W},\quad \boldsymbol{W}\triangleq (\boldsymbol{w}_1,\boldsymbol{w}_2,\dots,\boldsymbol{w}_k)\label{eq:k}\end{equation}
其中$\boldsymbol{W}\in \mathbb{R}^{d\times k}$是一个矩阵,它就被称“核”(全连接核/卷积核),而$\boldsymbol{w}_1,\boldsymbol{w}_2,\dots,\boldsymbol{w}_k\in \mathbb{R}^{d}$是该矩阵的各个列向量。
能量视角下的GAN模型(三):生成模型=能量模型
By 苏剑林 | 2019-05-10 | 53660位读者 | 引用今天要介绍的结果还是跟能量模型相关,来自论文《Implicit Generation and Generalization in Energy-Based Models》。当然,它已经跟GAN没有什么关系了,但是跟本系列第二篇所介绍的能量模型关系较大,所以还是把它放到这个系列好了。
我当初留意到这篇论文,是因为机器之心的报导《MIT本科学神重启基于能量的生成模型,新框架堪比GAN》,但是说实在的,这篇文章没什么意思,说句不中听的,就是炒冷饭系列,媒体的标题也算中肯,是“重启”。这篇文章就是指出能量模型实际上就是某个特定的Langevin方程的静态解,然后就用这个Langevin方程来实现采样,有了采样过程也就可以完成能量模型的训练,这些理论都是现成的,所以这个过程我在学习随机微分方程的时候都想过,我相信很多人也都想过。因此,我觉得作者的贡献就是把这个直白的想法通过一系列炼丹技巧实现了。
但不管怎样,能训练出来也是一件很不错的事情,另外对于之前没了解过相关内容的读者来说,这确实也算是一个不错的能量模型案例,所以我论文的整体思路整理一下,让读者能够更全面地理解能量模型。
最近评论