【理解黎曼几何】3. 测地线
By 苏剑林 | 2016-10-15 | 56221位读者 | 引用测地线
黎曼度量应该是不难理解的,在微分几何的教材中,我们就已经学习过曲面的“第一基本形式”了,事实上两者是同样的东西,只不过看待问题的角度不同,微分几何是把曲面看成是三维空间中的二维子集,而黎曼几何则是从二维曲面本身内蕴地研究几何问题。
几何关心什么问题呢?事实上,几何关心的是与变换无关的“客观实体”(或者说是在变换之下不变的东西),这也是几何的定义。根据Klein提出的《埃尔朗根纲领》,几何就是研究在某种变换(群)下的不变性质的学科。如果把变换局限为刚性变换(平移、旋转、反射),那么就是欧式几何;如果变换为一般的线性变换,那就是仿射几何。而黎曼几何关心的是与一切坐标都无关的客观实体。比如说,我有一个向量,方向和大小都确定了,在直角坐标系是$(1, 1)$,在极坐标系是$(\sqrt{2}, \pi/4)$,虽然两个坐标系下的分量不同,但它们都是指代同一个向量。也就是说向量本身是客观存在的实体,跟所使用的坐标无关。从代数层面看,就是只要能够通过某种坐标变换相互得到的,我们就认为它们是同一个东西。
因此,在学习黎曼几何时,往“客观实体”方向思考,总是有益的。
有了度规,可以很自然地引入“测地线”这一实体。狭义来看,它就是两点间的最短线——是平直空间的直线段概念的推广(实际的测地线不一定是最短的,但我们先不纠结细节,而且这不妨碍我们理解它,因为测地线至少是局部最短的)。不难想到,只要两点确定了,那么不管使用什么坐标,两点间的最短线就已经确定了,因此这显然是一个客观实体。有一个简单的类比,就是不管怎么坐标变换,一个函数$f(x)$的图像极值点总是确定的——不管你变还是不变,它就在那儿,不偏不倚。
【外微分浅谈】1. 绪论与启发
By 苏剑林 | 2016-11-04 | 26025位读者 | 引用写在前面
在《理解黎曼几何》系列,笔者分享了一些黎曼几何的“几何”心得,同时遗留了一个问题:怎么真正地去算黎曼张量?MTW的《引力论》中提到了一种基于外微分的方法,可是我不熟悉外微分,遂学习了一番。确实,是《引力论》中快捷计算曲率张量的步骤让笔者决定深入了解外微分的。果然,可观的效益是第一推动力。
这系列文章主要分享一些外微分的学习心得,曾经过多次修改和完善,包含的内容很多,比如外积、活动标架、外微分及其在黎曼几何的一些应用等,最后包括一种计算曲率的有效方式。
符号说明:在本系列中,用粗体的字母表示向量、矩阵以及基底,用普通字母来表示标量,它有可能是一个标量函数,也有可能是向量的分量,如无说明,则用$n$表示空间(流形)的维度。本文中同样使用了爱因斯坦求和法则,即相同的上下指标表示$1\sim n$遍历求和,即$\alpha_{\mu}\beta^{\mu}=\sum_{\mu=1}^{n} \alpha_{\mu}\beta^{\mu}$,习惯上将下标写在前面,比如$\alpha_{\mu}\beta^{\mu}$事实上跟$\beta^{\mu}\alpha_{\mu}$等价,但习惯写成前者。常用的一些记号是:$\mu,\nu$表示分量指标,$x^{\mu}$表示点的坐标分量,$dx^{\mu}$表示切向量(微元)的分量,$\alpha,\beta,\omega$等希腊字母也常用来表示微分形式。符号的使用有重复的地方,但符号的意义基本都在符号出现的附近有说明,因此应该不至于混淆。
最后,就是笔者其实对外微分还不是特别有感觉,因此文章中可能出现谬误之处,请读者见谅并指出。本系列命名为“外微分浅谈”,不是谦虚,确实是很浅,认识得浅,说的也很浅~
【语料】2500万中文三元组!
By 苏剑林 | 2017-04-24 | 88846位读者 | 引用闲聊
这两年,知识图谱、问答系统、聊天机器人等领域是越来越火了。知识图谱是一个很泛化的概念,在我看来,涉及到知识库的构建、检索、利用等机器学习相关的内容,都算知识图谱。当然,这也不是个什么定义,只是个人的直观感觉。
做知识图谱的读者都知道,三元组是结构化知识的一种方法,是做知识型问答系统的重要组成部分。对于英文领域,已经有一些较大的开源的三元组语料库,而很显然,中文目前还没有这样的语料库共享(哪怕有人爬取到了,也珍藏起来了)。笔者前段时间写了个百度百科的爬虫,爬了一段时间,抓了几百万个百度百科的词条。其中不少词条含有一些结构化的信息,直接抽取出来,就是有效的“三元组”了,可以用来做知识图谱。本文分享的三元组语料正是由此而来,共有2500万个三元组。
级联抑制:提升GAN表现的一种简单有效的方法
By 苏剑林 | 2019-12-01 | 33664位读者 | 引用昨天刷arxiv时发现了一篇来自星星韩国的论文,名字很直白,就叫做《A Simple yet Effective Way for Improving the Performance of GANs》。打开一看,发现内容也很简练,就是提出了一种加强GAN的判别器的方法,能让GAN的生成指标有一定的提升。
作者把这个方法叫做Cascading Rejection,我不知道咋翻译,扔到百度翻译里边显示“级联抑制”,想想看好像是有这么点味道,就暂时这样叫着了。介绍这个方法倒不是因为它有多强大,而是觉得它的几何意义很有趣,而且似乎有一定的启发性。
正交分解
GAN的判别器一般是经过多层卷积后,通过flatten或pool得到一个固定长度的向量$\boldsymbol{v}$,然后再与一个权重向量$\boldsymbol{w}$做内积,得到一个标量打分(先不考虑偏置项和激活函数等末节):
\begin{equation}D(\boldsymbol{x})=\langle \boldsymbol{v},\boldsymbol{w}\rangle\end{equation}
也就是说,用$\boldsymbol{v}$作为输入图片的表征,然后通过$\boldsymbol{v}$和$\boldsymbol{w}$的内积大小来判断出这个图片的“真”的程度。
用bert4keras做三元组抽取
By 苏剑林 | 2020-01-03 | 253217位读者 | 引用在开发bert4keras的时候就承诺过,会逐渐将之前用keras-bert实现的例子逐渐迁移到bert4keras来,而那里其中一个例子便是三元组抽取的任务。现在bert4keras的例子已经颇为丰富了,但还没有序列标注和信息抽取相关的任务,而三元组抽取正好是这样的一个任务,因此就补充上去了。
当Bert遇上Keras:这可能是Bert最简单的打开姿势
By 苏剑林 | 2019-06-18 | 419724位读者 | 引用Bert是什么,估计也不用笔者来诸多介绍了。虽然笔者不是很喜欢Bert,但不得不说,Bert确实在NLP界引起了一阵轩然大波。现在不管是中文还是英文,关于Bert的科普和解读已经满天飞了,隐隐已经超过了当年Word2Vec刚出来的势头了。有意思的是,Bert是Google搞出来的,当年的word2vec也是Google搞出来的,不管你用哪个,都是在跟着Google大佬的屁股跑啊~
Bert刚出来不久,就有读者建议我写个解读,但我终究还是没有写。一来,Bert的解读已经不少了,二来其实Bert也就是基于Attention的搞出来的大规模语料预训练的模型,本身在技术上不算什么创新,而关于Google的Attention我已经写过解读了,所以就提不起劲来写了。
总的来说,我个人对Bert一直也没啥兴趣,直到上个月末在做信息抽取比赛时,才首次尝试了Bert。因为后来想到,即使不感兴趣,终究也是得学会它,毕竟用不用是一回事,会不会又是另一回事。再加上在Keras中使用(fine tune)Bert,似乎还没有什么文章介绍,所以就分享一下自己的使用经验。
bert4keras在手,baseline我有:百度LIC2020
By 苏剑林 | 2020-04-02 | 92565位读者 | 引用百度的“2020语言与智能技术竞赛”开赛了,今年有五个赛道,分别是机器阅读理解、推荐任务对话、语义解析、关系抽取、事件抽取。每个赛道中,主办方都给出了基于PaddlePaddle的baseline模型,这里笔者也基于bert4keras给出其中三个赛道的个人baseline,从中我们可以看到用bert4keras搭建baseline模型的方便快捷与简练。
思路简析
这里简单分析一下这三个赛道的任务特点以及对应的baseline设计。
BERT-of-Theseus:基于模块替换的模型压缩方法
By 苏剑林 | 2020-07-17 | 91547位读者 | 引用最近了解到一种称为“BERT-of-Theseus”的BERT模型压缩方法,来自论文《BERT-of-Theseus: Compressing BERT by Progressive Module Replacing》。这是一种以“可替换性”为出发点所构建的模型压缩方案,相比常规的剪枝、蒸馏等手段,它整个流程显得更为优雅、简洁。本文将对该方法做一个简要的介绍,给出一个基于bert4keras的实现,并验证它的有效性。
模型压缩
首先,我们简要介绍一下模型压缩。不过由于笔者并非专门做模型压缩的,也没有经过特别系统的调研,所以该介绍可能显得不专业,请读者理解。
最近评论