8 Apr

浅谈引力助推

这已经是去年写的稿件了,刊登在今年二月份的《天文爱好者》上,本文的标题还登载了该期天爱的封面上,当时甚是高兴呢!在此与大家分享、共勉。

相信许多天文爱好者都知道第一、第二、第三宇宙速度的概念,也会有不少的天爱自己动手计算过它们。我们道,只要发射速度达到7.9km/s,宇宙飞船就可以绕地球运行了;超过11.2km/s,就可以抛开地球,成为太阳系的一颗“人造行星”;再大一点,超过16.7km/s,那么就连太阳也甩掉了,直奔深空。

16.7km/s,咋看上去并不大,因为地球绕太阳运行的速度已经是30km/s了,这个速度在宇宙中实在是太普通了。但是对于我们目前的技术来说,它大得有点可怕。维基百科上的资料显示,史上最强劲的火箭土星五号在运送阿波罗11号到月球时,飞船最终也只能加速到接近逃逸速度,即11.2km/s,而事实上第三宇宙速度已经是是目前人造飞行器的速度极限了。可是没有速度,我们就不能发射探测器去探索深空,那些科幻小说中的“星际移民”,就永远只能停留在小说上了。

点击阅读全文...

14 Apr

流体静力平衡的应用

很早以前我就对这个问题感兴趣了,但是一直搁置着,没有怎么研究。最近在阅读《引力与时空》的“潮汐力”那一节时重新回到了这个问题上,决定写点什么东西。在这里不深究流体静力平衡的定义,顾名思义地理解,它就是流体在某个特定的力场下所达到的平衡状态。流体静力学告诉我们:

达到流体静力平衡时,流体的面必定是一个等势面。

这是为什么呢?我们从数学的角度来简单分析一下:只考虑二维情况,假如等势面方程是$U(x,y)=C$,那么两边微分就有
$$0=dU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy=(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})\cdot (dx,dy)$$

这意味着向量$(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})$和向量$(dx,dy)$是垂直的,前者便是力的函数,后者就是一个切向量(三维就是一个切平面)。也就是说合外力必然和流体面垂直,这样才能提供一个相等的方向相反的内力让整个结构体系处于平衡状态!

点击阅读全文...

18 Apr

纠缠的时空(三):长度收缩和时间延缓

我们之前通过矩阵变换方式推导出了洛伦兹变换以及速度合成公式等结论,不得不说,矩阵推导方式有种引人入胜的魅力。今天,在讲述相对论(包括电动力学、广义相对论)的书籍里边,在数学形式上取而代之了张量这一工具,这实际上是对矩阵的一个推广(之前已经提到过,二阶张量相当于矩阵)。采用这样的形式在于它充分体现了相对论的对称和变换关系。本文将来谈及狭义相对论的一些基本结论,包括同时性、长度收缩、时间延缓等。

本文的光速$c=1$。

同时的相对性

在同一时空中,采取两个时空坐标进行洛伦兹变换,再作差,我们得到:
\begin{equation}\left[\begin{array}{c} \Delta x\\ \Delta t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}\Delta x'\\ \Delta t' \end{array}\right]\end{equation}

点击阅读全文...

25 Apr

学习场论(电磁场、重力场)

本博客的文章其实一定程度上反映了我在该时期的学习研究,所以我觉得写blog是一件很惬意的事情,它记录着我的成长历程。读者可能留意到,我上学期说对量子力学很感兴趣,也算是入了一点点门。这学期开学初表示对摄动理论方面的知识很感兴趣,也研究了一两个星期。再后来就将学习重点放在了相对论上面了。现在呢?我在学习朗道的《场论》,主要先学习电磁场(电动力学)。

有的读者可能比较无语:你怎么变来变去,学习不是贵在精而不在多吗?

点击阅读全文...

27 Apr

[备忘]历史天气查询

天气预报查询我相信大家用过不少了,如果精度要求不高,那么随便打开谷歌输入“城市名+tq”就可以查询到了。可是你有没有想过过去的天气怎么查询呢?比如我要研究最近十年的气候变化,我想得到最近十年每天的天气数据(最高温、最低温等等),那要怎么查呢?

我在很早以前就想查询到这些数据,但是在网上随便搜索了一下,无果,所以一直搁置着。前两天一个同学问我同样的问题,所以就查找了一番,功夫不负有心人,终于找到了。原来关键字应该是“历史天气查询”(之前我搜索了很多关键字,比如“气象数据下载”、“气象统计”等等,都没有搜索到有用的结果)。

一个支持历史天气查询的中文网站是:
http://lishi.tianqi.com/

点击阅读全文...

22 May

当Matlab遇上牛顿法

牛顿法是求方程近似根的一个相当有用而且快捷的方法,我们最近科学计算软件课程(Matlab)的一个作业就是编写求方程近似解的程序,其中涉及到牛顿法。我们要实现的目标是,用户输入一道方程,脚本就自动求出根来。这看起来是一个挺简单的循环迭代程序,但是由于Matlab本身的特殊性,却产生了不少困难。

Matlab是为了数值计算(尤其是矩阵运算)而生的,因此它并不擅长处理符号计算。这就给我们编程带来了困难。在网上随便一搜,就可以发现,网上的Matlab牛顿法程序都是要求用户同时输入方程及其导函数,这显然是不方便的,因为Matlab本身就具备了求导功能。下面我们来分析一下困难在哪里。

我们要实现的最基本功能是定义一个函数,然后可以根据该函数求具体的函数值,并且自动求该函数的导数,接着求导数值。这些看起来很基本的功能在Matlab中却很难调和,因为Matlab的“函数”定义很广,一个具有特定功能的M文件叫“函数”,一个运算式$f(x)$也可能是一个函数,显然后者是可以求导的,前者却不行,所以Matlab一刀砍——不能对函数求导!!

点击阅读全文...

24 May

《虚拟的实在(1)》——为什么需要场?

迈克尔·法拉第肖像画

迈克尔·法拉第肖像画

这段时间我接触的物理学都是场论,从各种方面为广义相对论奠基。自我感觉,我的数学基础还算可以的,但是物理“底蕴”就不够了,通常是能够把物理理论的数学描述看懂,但是对每一步的物理基础和来源却不甚了解,真是“数学有余而物理不足”呀。陶醉在场论的海洋一段时间之后,对场论也有了个大概的印象。但是有一个最基础的问题,直到今天我才算是得到了比较满意的解答——为什么要引入场?

在传统的牛顿力学中并没有“场”这一概念,比如天体力学我们只需要考虑天体之间的相互作用力就可以完美解决很多问题,根本不需要场。估计广大读者首次接触到“场”的概念是在高中学习电学的时候,那时教科书给我们带来了电场、场线等诸多诡异的概念。事实上就是如此,可以这样说,历史上“场”是为了电磁学而诞生的——法拉第首次引入的场线具有独特的魅力。

点击阅读全文...

5 Jul

齐次对称多项式初等表示的新尝试

这是我的这学期高等代数课的一个小论文。说到这里,其实我挺喜欢那些不用考试,通过平时考核以及写论文、报告或者做实验的方式来评成绩的方式,毕竟我觉得这才是比较综合地体现了知识和技能的水平(当然更重要的一个原因是我比较喜欢写作啦~~)。我们高等代数有两门课程,一是基本的上课,二是研讨课,分别考核。老师照顾我们,研讨课不用考试,写小论文就行了。Yeah~~

我写的是有关对称多项式的。其实这文章在半个学期之前就酝酿着了,当时刚学到对称多项式的初等表示。所谓初等表示,就是将一个多元对称多项式表示为$\sigma_1,\sigma_2,\sigma_3,...$的组合。其中
$$\begin{aligned}\sigma_1=x_1+x_2+...+x_n \\ \sigma_2=x_1 x_2+x_1 x_3+...+x_1 x_n+x_2 x_3+...+x_{n-1} x_n \\ ... \\ \sigma_n=x_1 x_2 ... x_n\end{aligned}$$
书本上给出了待定系数法,但是每次都要求解方程组,让我甚是烦恼,所以我研究直接展开的方案,最终得出了两种方法。当时也刚好接触着张量的知识,了解到“爱因斯坦求和约定”,于是想充分发挥其威力,就促成了这篇文章。其实我自定义了“方括弧”和“圆括弧”两种运算,都是符号上的简化。两种方法在某种意义上相互补充,笔者自感颇为满意,遂与大家分享。具体内容就不贴出来了,请大家下载pdf文件观看吧。

点击阅读全文...