通向最优分布之路:概率空间的最小化
By 苏剑林 | 2024-08-06 | 17827位读者 | 引用当要求函数的最小值时,我们通常会先求导函数然后寻找其零点,比较幸运的情况下,这些零点之一正好是原函数的最小值点。如果是向量函数,则将导数改为梯度并求其零点。当梯度零点不易求得时,我们可以使用梯度下降来逐渐逼近最小值点。
以上这些都是无约束优化的基础结果,相信不少读者都有所了解。然而,本文的主题是概率空间中的优化,即目标函数的输入是一个概率分布,这类目标的优化更为复杂,因为它的搜索空间不再是无约束的,如果我们依旧去求解梯度零点或者执行梯度下降,所得结果未必能保证是一个概率分布。因此,我们需要寻找一种新的分析和计算方法,以确保优化结果能够符合概率分布的特性。
对此,笔者一直以来也感到颇为头疼,所以近来决定”痛定思痛“,针对概率分布的优化问题系统学习了一番,最后将学习所得整理在此,供大家参考。
对齐全量微调!这是我看过最精彩的LoRA改进(二)
By 苏剑林 | 2024-07-29 | 21895位读者 | 引用前两周笔者写了《对齐全量微调!这是我看过最精彩的LoRA(一)》(当时还没有编号“一”),里边介绍了一个名为“LoRA-GA”的LoRA变体,它通过梯度SVD来改进LoRA的初始化,从而实现LoRA与全量微调的对齐。当然,从理论上来讲,这样做也只能尽量对齐第一步更新后的$W_1$,所以当时就有读者提出了“后面的$W_2,W_3,\cdots$不管了吗?”的疑问,当时笔者也没想太深入,就单纯觉得对齐了第一步后,后面的优化也会严格一条较优的轨迹走。
有趣的是,LoRA-GA才出来没多久,arXiv上就新出了《LoRA-Pro: Are Low-Rank Adapters Properly Optimized?》,其所提的LoRA-Pro正好能回答这个问题!LoRA-Pro同样是想着对齐全量微调,但它对齐的是每一步梯度,从而对齐整条优化轨迹,这正好是跟LoRA-GA互补的改进点。
对齐全量
本文接着上一篇文章的记号和内容进行讲述,所以这里仅对上一节的内容做一个简单回顾,不再详细重复介绍。LoRA的参数化方式是
\begin{equation}W = (W_0 - A_0 B_0) + AB\end{equation}
“Cool Papers + 站内搜索”的一些新尝试
By 苏剑林 | 2024-08-12 | 15164位读者 | 引用在《Cool Papers更新:简单搭建了一个站内检索系统》这篇文章中,我们介绍了Cool Papers新增的站内搜索系统。搜索系统的目的,自然希望能够帮助用户快速找到他们需要的论文。然而,如何高效地检索到对自己有价值的结果,并不是一件简单的事情,这里边往往需要一些技巧,比如精准提炼关键词。
这时候算法的价值就体现出来了,有些步骤人工来做会比较繁琐,但用算法来却很简单。所以接下来,我们将介绍几点通过算法来提高Cool Papers的搜索和筛选论文效率的新尝试。
相关论文
站内搜索背后的技术是全文检索引擎(Full-text Search Engine),简单来说,这就是一个基于关键词匹配的搜索算法,其相似度指标是BM25。
低秩近似之路(三):CR
By 苏剑林 | 2024-10-11 | 11939位读者 | 引用在《低秩近似之路(二):SVD》中,我们证明了SVD可以给出任意矩阵的最优低秩近似。那里的最优近似是无约束的,也就是说SVD给出的结果只管误差上的最小,不在乎矩阵的具体结构,而在很多应用场景中,出于可解释性或者非线性处理等需求,我们往往希望得到具有某些特殊结构的近似分解。
因此,从这篇文章开始,我们将探究一些具有特定结构的低秩近似,而本文将聚焦于其中的CR近似(Column-Row Approximation),它提供了加速矩阵乘法运算的一种简单方案。
问题背景
矩阵的最优$r$秩近似的一般提法是
\begin{equation}\mathop{\text{argmin}}_{\text{rank}(\tilde{\boldsymbol{M}})\leq r}\Vert \tilde{\boldsymbol{M}} - \boldsymbol{M}\Vert_F^2\label{eq:loss-m2}\end{equation}
深度学习中的Lipschitz约束:泛化与生成模型
By 苏剑林 | 2018-10-07 | 149623位读者 | 引用前言:去年写过一篇WGAN-GP的入门读物《互怼的艺术:从零直达WGAN-GP》,提到通过梯度惩罚来为WGAN的判别器增加Lipschitz约束(下面简称“L约束”)。前几天遐想时再次想到了WGAN,总觉得WGAN的梯度惩罚不够优雅,后来也听说WGAN在条件生成时很难搞(因为不同类的随机插值就开始乱了...),所以就想琢磨一下能不能搞出个新的方案来给判别器增加L约束。
闭门造车想了几天,然后发现想出来的东西别人都已经做了,果然是只有你想不到,没有别人做不到。主要包含在这两篇论文中:《Spectral Norm Regularization for Improving the Generalizability of Deep Learning》和《Spectral Normalization for Generative Adversarial Networks》。
所以这篇文章就按照自己的理解思路,对L约束相关的内容进行简单的介绍。注意本文的主题是L约束,并不只是WGAN。它可以用在生成模型中,也可以用在一般的监督学习中。
L约束与泛化
扰动敏感
记输入为$x$,输出为$y$,模型为$f$,模型参数为$w$,记为
$$\begin{equation}y = f_w(x)\end{equation}$$
很多时候,我们希望得到一个“稳健”的模型。何为稳健?一般来说有两种含义,一是对于参数扰动的稳定性,比如模型变成了$f_{w+\Delta w}(x)$后是否还能达到相近的效果?如果在动力学系统中,还要考虑模型最终是否能恢复到$f_w(x)$;二是对于输入扰动的稳定性,比如输入从$x$变成了$x+\Delta x$后,$f_w(x+\Delta x)$是否能给出相近的预测结果。读者或许已经听说过深度学习模型存在“对抗攻击样本”,比如图片只改变一个像素就给出完全不一样的分类结果,这就是模型对输入过于敏感的案例。
VQ的又一技巧:给编码表加一个线性变换
By 苏剑林 | 2024-11-06 | 8501位读者 | 引用在《VQ的旋转技巧:梯度直通估计的一般推广》中,我们介绍了VQ(Vector Quantization)的Rotation Trick,它的思想是通过推广VQ的STE(Straight-Through Estimator)来为VQ设计更好的梯度,从而缓解VQ的编码表坍缩、编码表利用率低等问题。
无独有偶,昨天发布在arXiv上的论文《Addressing Representation Collapse in Vector Quantized Models with One Linear Layer》提出了改善VQ的另一个技巧:给编码表加一个线性变换。这个技巧单纯改变了编码表的参数化方式,不改变VQ背后的理论框架,但实测效果非常优异,称得上是简单有效的经典案例。
变分自编码器(一):原来是这么一回事
By 苏剑林 | 2018-03-18 | 954979位读者 | 引用过去虽然没有细看,但印象里一直觉得变分自编码器(Variational Auto-Encoder,VAE)是个好东西。于是趁着最近看概率图模型的三分钟热度,我决定也争取把VAE搞懂。于是乎照样翻了网上很多资料,无一例外发现都很含糊,主要的感觉是公式写了一大通,还是迷迷糊糊的,最后好不容易觉得看懂了,再去看看实现的代码,又感觉实现代码跟理论完全不是一回事啊。
终于,东拼西凑再加上我这段时间对概率模型的一些积累,并反复对比原论文《Auto-Encoding Variational Bayes》,最后我觉得我应该是想明白了。其实真正的VAE,跟很多教程说的的还真不大一样,很多教程写了一大通,都没有把模型的要点写出来~于是写了这篇东西,希望通过下面的文字,能把VAE初步讲清楚。
分布变换
通常我们会拿VAE跟GAN比较,的确,它们两个的目标基本是一致的——希望构建一个从隐变量$Z$生成目标数据$X$的模型,但是实现上有所不同。更准确地讲,它们是假设了$Z$服从某些常见的分布(比如正态分布或均匀分布),然后希望训练一个模型$X=g(Z)$,这个模型能够将原来的概率分布映射到训练集的概率分布,也就是说,它们的目的都是进行分布之间的变换。
细水长flow之RealNVP与Glow:流模型的传承与升华
By 苏剑林 | 2018-08-26 | 305740位读者 | 引用话在开头
上一篇文章《细水长flow之NICE:流模型的基本概念与实现》中,我们介绍了flow模型中的一个开山之作:NICE模型。从NICE模型中,我们能知道flow模型的基本概念和基本思想,最后笔者还给出了Keras中的NICE实现。
本文我们来关心NICE的升级版:RealNVP和Glow。
精巧的flow
不得不说,flow模型是一个在设计上非常精巧的模型。总的来看,flow就是想办法得到一个encoder将输入$\boldsymbol{x}$编码为隐变量$\boldsymbol{z}$,并且使得$\boldsymbol{z}$服从标准正态分布。得益于flow模型的精巧设计,这个encoder是可逆的,从而我们可以立马从encoder写出相应的decoder(生成器)出来,因此,只要encoder训练完成,我们就能同时得到decoder,完成生成模型的构建。
为了完成这个构思,不仅仅要使得模型可逆,还要使得对应的雅可比行列式容易计算,为此,NICE提出了加性耦合层,通过多个加性耦合层的堆叠,使得模型既具有强大的拟合能力,又具有单位雅可比行列式。就这样,一种不同于VAE和GAN的生成模型——flow模型就这样出来了,它通过巧妙的构造,让我们能直接去拟合概率分布本身。
最近评论