Processing math: 100%
11 Feb

施密特系统的校正镜方程求解

非抛物面望远镜的校正镜方程求解
The Corrector Plate of Non-parabola Telescope

本文在牧夫天文论坛的讨论:
http://www.astronomy.ac/bbs/thread-160257-1-1.html

为了克服折射望远镜的色差问题,1670年,牛顿制造了第一台实用的反射式望远镜,将望远镜的主镜由玻璃透镜换成了抛物反射面,从而消除了色差。然而,相比球面镜,大口径的抛物面并不容易磨制。因为制作大球面镜只需要将曲率相等的小镜片相对自由组合在一起就行了,而抛物线每点的曲率并不相等,所以需要逐个磨制曲率不等的小镜片,并按照严格的顺序组合起来。这无疑大大增加了磨制难度。

Lamost是目前世界最大的施密特望远镜

Lamost是目前世界最大的施密特望远镜

为了解决这一难题,天文学家们想到了一个折衷的办法:以球面为主镜,并配以校正镜来校正球差。迎着这一思路,施密特望远镜随之而生。而当代的大望远镜基本上都是沿用这一思路。然而,校正镜是一个比抛物面更加复杂的四次曲面,磨制工艺要求更高,因此,校正镜也不宜过大。

点击阅读全文...

9 Jan

不可能事件——一道经典电磁感应题的错误

相信高二理科的学生都会做过这样的一道题目:

光滑导轨-电磁感应

光滑导轨-电磁感应

水平放置于匀强磁场中的光滑导轨上,磁感应强度为B,平衡导轨的距离为L,有一根导体棒ab,用恒力F作用在ab上,由静止开始运动,回路总电阻为R,求ab的最大速度。

对于高二学生来说,这样的题目是很好解决的。只要列出
E=BLv,I=ER,f1=BIL,并根据当匀速运动时速度最大,由受力平衡有f1=F,解得
(E:感应电动势;I:感应电流;f1:安培力)
v=FRB2L2

点击阅读全文...

13 Nov

意犹未尽——继续光学曲线

《为什么是抛物线?——聚光面研究》这篇文章里头,我们从光学性质出发,推导出了符合该光学性质的曲线为抛物线,同时我们也不禁感到了向量分析的美妙。也许有的读者会意犹未尽:圆锥曲线有三种,文章只介绍了一种。那好,在这篇文章里,我们就从另外两个光学性质出发,推导出符合这两个光学性质的曲线(椭圆、双曲线)。

(注:在下面的描述中,橙色加粗向量表示光线,曲线表示反射面。)

一、从一个点发出的光线经过曲线(面)反射后汇集到另外一个点上。

椭圆的光学性质

椭圆的光学性质

点击阅读全文...

7 Nov

为什么是抛物线?——聚光面研究

很多读者都知道,反射望远镜、射电望远镜、太阳能集热器等都有一个抛物状的面,它们都是利用了抛物面能将平行射入的光汇聚到一个点(焦点)上的性质。如果问为什么抛物面具有此性质,相信很多高中生都可以利用抛物线的相关知识来证明。但是,如果反过来问:为什么具有此性质的曲面是抛物面?相信会难倒一部分读者。我们来尝试寻找这一曲线(由于对称的原因,这个曲面可以看作由曲线旋转而成,因此我们可以研究曲线)。

世上最大单孔径射电望远镜

世上最大单孔径射电望远镜

点击阅读全文...

31 Oct

当酸溶液遇到了更多的水时...

BoJone:阅读本文需要有电离平衡的相关知识作为基础。

这两个星期我们都在学习高中的人教版《化学选修4》中的电离平衡相关知识。虽然我们是“重点班”,可是进展仍然相当地慢。关于电离平衡,有同学向我提出过一个问题:

酸溶液继续加水后,为什么pH会趋于7?(常温常压)

显然,这个问题是很好理解的,因为加水后H+被稀释了。然后我更感兴趣是由此引申出的一个问题:

(强)酸溶液继续加水后,平衡向哪边移动?

点击阅读全文...

16 Oct

球壳内部的均匀力场

也许不少同好已经在一些书籍上看到过这样的论述:

各向同性的薄球壳,其内部任意一点所受到来自球壳的引力为0。

这是一个很神奇的事情,因为这意味着这是一个均匀引力场,虽然我们在很多问题上都假设了引力场均匀,但是我们却很难知道如何构造一个真正的均匀引力场(而构造一个真正的均匀力场都分析某些问题是很有用的,例如推导一些比例系数),现在眼前就摆着一个均匀引力场了。并且利用它我们就可以计算均匀实心球内部一点所受到的引力(等于它与一个球体的引力)。而关于它的证明,当然也可以利用微积分的知识,可是我们在这里介绍一个初等的方法,相信它会使我们更加感受到物理的神奇和有趣。

点击阅读全文...

28 Aug

月球上的多角度反射镜

各反射镜在月球上的位置

各反射镜在月球上的位置

很多读者都听说过,现在地球上可以发射激光到月球,反射回来,通过计算一来一回的时间来测量地月距离。现在问题是,怎样的镜子才能够把来自不同角度的光都以相同的方向反射回去呢?实现这一目的的镜子称为“多角度反射镜”。

点击阅读全文...

7 Aug

旋转的弹簧将如何伸长(2)?

弹簧

弹簧

上一次我从密度的角度讨论了旋转的弹簧伸长的问题,由于对弹性形变等问题是初涉,所以花了好大功夫。这几天重新认识了一下胡克定律,并且从另外的角度给出了这道题目的一个相对简单的解法。在此把它记录下来,并写写我对弹性形变的一些粗浅看法。

在解答的过程中,我再次体验到了殊途同归的感觉,科学就是这样的奇妙,一个目的地往往有着不止一条道路,不同的道路会给我们不同的科学视觉,最终领略到不同的科学美景;多走几条路,更能够让我们从不同的角度领略美不胜收的科学,这也是众多旅游爱好者不辞千里地观赏美景的原因!

点击阅读全文...