1 Sep

从费马大定理谈起(九):n=3

现在可以开始$n=3$的证明了。在实整数范围内n=3的证明看起来相当复杂,而且跟n=4的证明似乎没有相通之处。然而,如果我们在$\mathbb{Z}[\omega]$中考虑$x^3+y^3+z^3=0$无解的证明,就会跟n=4时有很多类似的地方,而且事实上证明比n=4时简单(要注意在实整数范围内的证明,n=4比n=3简单。费马完成了n=4的证明,但是没完成n=3的证明。)。我想,正是这样的类似之处,才让当初还没有完成证明的数学家拉梅就自信他从这条路可以完成费马大定理的证明。(不过,这自信却是失败的案例:拉梅的路不能完全走通,而沿着这条路走得更远的当属库默,但即便这样,库默也没有证明费马大定理。)

证明跟$n=4$的第二个证明是类似的。我们先往方程中添加一个单位数,然后证明无论单位数是什么,方程在$\mathbb{Z}[\omega]$中都无解。这是一个很妙的技巧,让我们证明了更多的方程无解,但是却用到了更少的步骤。事实上,存在着只证明$x^3+y^3+z^3=0$无解的证明,但需要非常仔细地分析里边的单位数情况,这是相当麻烦的。本证明是我参考了Fermats last theorem blogspot上的证明,然后结合本系列n=4的第二个证明,简化而来,主要是减少了对单位数的仔细分析。

点击阅读全文...

30 Aug

从费马大定理谈起(八):艾森斯坦整数

Gotthold_Eisenstein

Gotthold_Eisenstein

是时候向n=3进军了,为了证明这个情况,我们需要一个新的数环:艾森斯坦整数(Eisenstein Integer)。艾森斯坦是德国著名数学家,同时代的高斯曾经评价:“只有三个划时代的数学家:阿基米德,牛顿和艾森斯坦。”足见艾森斯坦的成就斐然。事实上,阅读费马大定理的研究史,同时也是在阅读数学名人录——没有超高的数学,几乎不可能在费马大定理中有所建树。

基本定义

跟高斯整数一样,艾森斯坦整数也是复整数的一种,其中,高斯整数是以1和$i$为基,$i$其实是一个四次单位根,也就是$x^4-1=0$的一个非实数根,因此高斯整数也叫做四次分圆整数;而艾森斯坦整数以1和$\omega$为基,$\omega$是三次单位根,也就是$x^3-1=0$的一个非实数根。任意一个艾森斯坦整数都可以记为$a+b\omega,\,a,b\in\mathbb{Z}$,艾森斯坦整数环记为$\mathbb{Z}[\omega]$,也称为三次分圆整数环

点击阅读全文...

23 Aug

从费马大定理谈起(七):费马平方和定理

本想着开始准备n=3的证明,但这需要引入Eisenstein整数的概念,而我们已经引入了高斯整数,高斯整数的美妙还没有很好地展示给读者。从n=4的两个证明可以知道,引入高斯整数的作用,是把诸如$z^n-y^n$的式子进行完全分解。然而,这一点并没有给我们展示多少高斯整数的神奇。读者或许已经知道,复分析中很多简单的结果,如果单纯用实数描述出来,便会给人巧夺天工的感觉,在涉及到高斯整数的数论中也是一样。本文就让我们来思考费马平方和定理,以此再领会在高斯整数中处理某些数论问题时的便捷。——我们从费马大定理谈起,但又并不仅仅只谈费马大定理。

费马平方和定理:奇素数$p$可以表示为两个整数的平方和,当且仅当该素数具有$4k+1$的形式,而且不考虑相加顺序的情况下,表示法是唯一的。

点击阅读全文...

19 Aug

从费马大定理谈起(六):n=4(2)

上一篇文章中,笔者提到似乎证明n=4时必须要证明$x^4+y^4=z^2$无解而不能只证明$x^4+y^4=z^4$无解。不过,在今天中午研究的时候,笔者发现了另外一个n=4的证明,它同样是在$\mathbb{Z}[i]$中,但是,证明的则是指数全是4的形式,但是,又不单单是$x^4+y^4=z^4$的形式,而是$\varepsilon x^4+y^4=z^4$,$\varepsilon$是单位数。这个证明过程,我觉得应该更接近n等于其他奇素数时的证明,遂补充了这篇文章,供大家参考。读者可以对比着上一篇文章进行比较阅读。

引理

用$\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon$表示$\mathbb{Z}[i]$中的单位数,下面先证明

如果方程$\varepsilon_1 x'^4 +\varepsilon_2 y'^4+\varepsilon_3 z'^4=0$在$\mathbb{Z}[i]$中有全不为0的解,那么在经过适当的化简和整理之后,方程必有形式$\varepsilon x^4+y^4=z^4$,其中$(x,y,z)$是$(x',y',z')$的某个置换,$\xi^2|x$。

点击阅读全文...

19 Aug

从费马大定理谈起(五):n=4

是时候了!

前面用好几篇文章为费马大定理的证明铺设了道路,当然,相当于完整的费马大定理证明来说,这几篇文章只不过是沧海一粟而已。不过,它们已经足够用来完成费马大定理在n=4时的证明了。我们很快会看到高斯整数为n=4所带来的简洁的证明,而这让我们坚信,这一道路可以走得更远。

不定方程$x^4+y^4=z^2$在$\mathbb{Z}[i]$中没有全不为0的解。

点击阅读全文...

17 Aug

从费马大定理谈起(四):唯一分解整环

在小学的时候,数学老师就教我们除法运算:

被除数 = 除数 × 商 + 余数

其中,余数要小于除数。不过,我们也许未曾想到过,这一运算的成立,几乎是自然数$\mathbb{N}$所有算术(数论)运算性质成立的基础!在代数中,上面的运算等式称为带余除法(division algorithm)。如果在一个整环中成立带余除法,那么该整环几乎就拥有了所有理想的性质,比如唯一分解性,也就是我们说的算术基本定理。这样的一个整环,被称为唯一分解整环(Unique factorization domain)。

欧几里得整环

Euklid-von-Alexandria_1

Euklid-von-Alexandria_1

唯一分解定理说的是在一个整环之中,所有的元素都可以分解为该整环的某些“素元素”之积,并且在不考虑元素相乘的顺序和相差单位数的意义之下,分解形式是唯一的。我们通常说的自然数就成立唯一分解定理,比如$60=2^2\times 3\times 5$,这种分解是唯一的,这看起来相当显然,但实际上唯一分解定理相当不显然。首先,并不是所有的整数环都成立唯一分解定理的,我们考虑所有偶数组成的环$2\mathbb{Z}$,要注意,在$2\mathbb{Z}$中,2、6、10、30都是素数,因为它们无法分解成两个偶数的乘积了,但是$60=6\times 10=2\times 30$,存在两种不同的分解,因此在这样的数环中,唯一分解定理就不成立了。

点击阅读全文...

16 Aug

从费马大定理谈起(三):高斯整数

为了拓展整数的概念,我们需要了解关于环和域这两个代数结构,这些知识在网上或者相应的抽象代数教程中都会有。抽象地提出这两个代数结构,是为了一般地处理不同的数环、数域中的性质。在自然数集$\mathbb{N}$中,可以很方便定义和比较两个数字的大小,并且任意一个自然数的子集,都存在最小元素,这两点综合起来,我们就说$\mathbb{N}$是“良序”的(这也是数学归纳法的基础)。在良序的结构中,很多性质的证明变得很简单,比如算术基本定理。然而,一般的数环、数域并没有这样的“良序”,比如任意两个复数就不能比较大小。因此,一般的、不基于良序的思想就显得更为重要了。

环和域

关于环(Ring)的定义,可以参考维基百科上面的“环(代数)”条目。简单来说,环指的是这样一个集合,它的元素之间可以进行加法和乘法,并满足一些必要的性质,比如运算封闭性、加法可交换性等。而数论中大多数情况下研究的是数环,它指的是集合是数集的情况,并且通常来说,元素间的加法和乘法就是普通的数的加法和乘法。比如所有的实整数就构成一个数环$\mathbb{Z}$,这个数环是无限的;所有的偶整数也构成一个数环$2\mathbb{Z}$;对于素数$p$,在模$p$之下,数集$\{0,1,2,\dots,p-1\}$也构成了一个环,更特别的,它还是一个数域。

点击阅读全文...

15 Aug

从费马大定理谈起(二):勾股数

费马大定理说的是$n > 2$的情况,但是我们可以从$n=2$出发,求解到勾股数组的一般表达式,并且从中得到证明费马大定理的原始思想。

互质解

我们在实整数,也就是$\mathbb{Z}$内求解。为了求解不定方程$x^2+y^2=z^2$,首先我们注意到,这是一道齐次方程,这告诉我们,如果存在某一组解,那么可以通过同除以公约数的方法,得到一组两两互质的解。换句话说,有解必有互质解,这是$x^n+y^n=z^n$的解的通性。那么,我们假设$(x,y,z)=(a,b,c)$ 是方程$x^2+y^2=z^2$的一个互质解。

点击阅读全文...