24 Jun

OCR技术浅探:4. 文字定位

经过第一部分,我们已经较好地提取了图像的文本特征,下面进行文字定位. 主要过程分两步:1、邻近搜索,目的是圈出单行文字;2、文本切割,目的是将单行文本切割为单字.

邻近搜索

我们可以对提取的特征图进行连通区域搜索,得到的每个连通区域视为一个汉字. 这对于大多数汉字来说是适用,但是对于一些比较简单的汉字却不适用,比如“小”、“旦”、“八”、“元”这些字,由于不具有连通性,所以就被分拆开了,如图13. 因此,我们需要通过邻近搜索算法,来整合可能成字的区域,得到单行的文本区域.

图13 直接搜索连通区域,会把诸如“元”之类的字分拆开

图13 直接搜索连通区域,会把诸如“元”之类的字分拆开

邻近搜索的目的是进行膨胀,以把可能成字的区域“粘合”起来. 如果不进行搜索就膨胀,那么膨胀是各个方向同时进行的,这样有可能把上下行都粘合起来了. 因此,我们只允许区域向单一的一个方向膨胀. 我们正是要通过搜索邻近区域来确定膨胀方向(上、下、左、右):

邻近搜索* 从一个连通区域出发,可以找到该连通区域的水平外切矩形,将连通区域扩展到整个矩形. 当该区域与最邻近区域的距离小于一定范围时,考虑这个矩形的膨胀,膨胀的方向是最邻近区域的所在方向.

既然涉及到了邻近,那么就需要有距离的概念. 下面给出一个比较合理的距离的定义.

距离

图14 两个示例区域

图14 两个示例区域

如上图,通过左上角坐标$(x,y)$和右下角坐标$(z,w)$就可以确定一个矩形区域,这里的坐标是以左上角为原点来算的. 这个区域的中心是$\left(\frac{x+w}{2},\frac{y+z}{2}\right)$. 对于图中的两个区域$S$和$S'$,可以计算它们的中心向量差
$$(x_c,y_c)=\left(\frac{x'+w'}{2}-\frac{x+w}{2},\frac{y'+z'}{2}-\frac{y+z}{2}\right)\tag{10}$$
如果直接使用$\sqrt{x_c^2+y_c^2}$作为距离是不合理的,因为这里的邻近应该是按边界来算,而不是中心点. 因此,需要减去区域的长度:
$$(x'_c,y'_c)=\left(x_c-\frac{w-x}{2}-\frac{w'-x'}{2},y_c-\frac{z-y}{2}-\frac{z'-y'}{2}\right)\tag{11}$$
距离定义为
$$d(S,S')=\sqrt{[\max(x'_c,0)]^2+[\max(y'_c,0)]^2}\tag{12}$$
至于方向,由$(x_c,y_c)$的幅角进行判断即可.

然而,按照前面的“邻近搜索*”方法,容易把上下两行文字粘合起来,因此,基于我们的横向排版假设,更好的方法是只允许横向膨胀:

邻近搜索 从一个连通区域出发,可以找到该连通区域的水平外切矩形,将连通区域扩展到整个矩形. 当该区域与最邻近区域的距离小于一定范围时,考虑这个矩形的膨胀,膨胀的方向是最邻近区域的所在方向,当且仅当所在方向是水平的,才执行膨胀操作.

结果

有了距离之后,我们就可以计算每两个连通区域之间的距离,然后找出最邻近的区域. 我们将每个区域向它最邻近的区域所在的方向扩大4分之一,这样邻近的区域就有可能融合为一个新的区域,从而把碎片整合.

实验表明,邻近搜索的思路能够有效地整合文字碎片,结果如图15.

图15 通过邻近搜索后,圈出的文字区域

图15 通过邻近搜索后,圈出的文字区域

18 Jun

OCR技术浅探:3. 特征提取(2)

逐层识别

当图像有效地进行分层后,我们就可以根据前面的假设,进一步设计相应的模型,通过逐层处理的方式找出图像中的文字区域.

连通性

8邻接

8邻接

可以看到,每一层的图像是由若干连通区域组成的,文字本身是由笔画较为密集组成的,因此往往文字也能够组成一个连通区域. 这里的连通定义为8邻接,即某个像素周围的8个像素都定义为邻接像素,邻接的像素则被定义为同一个连通区域.

定义了连通区域后,每个图层被分割为若干个连通区域,也就是说,我们逐步地将原始图像进行分解,如图9.

点击阅读全文...

18 Jun

OCR技术浅探:3. 特征提取(1)

作为OCR系统的第一步,特征提取是希望找出图像中候选的文字区域特征,以便我们在第二步进行文字定位和第三步进行识别. 在这部分内容中,我们集中精力模仿肉眼对图像与汉字的处理过程,在图像的处理和汉字的定位方面走了一条创新的道路. 这部分工作是整个OCR系统最核心的部分,也是我们工作中最核心的部分.

传统的文本分割思路大多数是“边缘检测 + 腐蚀膨胀 + 联通区域检测”,如论文[1]. 然而,在复杂背景的图像下进行边缘检测会导致背景部分的边缘过多(即噪音增加),同时文字部分的边缘信息则容易被忽略,从而导致效果变差. 如果在此时进行腐蚀或膨胀,那么将会使得背景区域跟文字区域粘合,效果进一步恶化.(事实上,我们在这条路上已经走得足够远了,我们甚至自己写过边缘检测函数来做这个事情,经过很多测试,最终我们决定放弃这种思路。)

因此,在本文中,我们放弃了边缘检测和腐蚀膨胀,通过聚类、分割、去噪、池化等步骤,得到了比较良好的文字部分的特征,整个流程大致如图2,这些特征甚至可以直接输入到文字识别模型中进行识别,而不用做额外的处理.由于我们每一部分结果都有相应的理论基础作为支撑,因此能够模型的可靠性得到保证.

图2:特征提取大概流程

图2:特征提取大概流程

点击阅读全文...

17 Jun

OCR技术浅探:2. 背景与假设

研究背景

关于光学字符识别(Optical Character Recognition, 下面都简称OCR),是指将图像上的文字转化为计算机可编辑的文字内容,众多的研究人员对相关的技术研究已久,也有不少成熟的OCR技术和产品产生,比如汉王OCR、ABBYY FineReader、Tesseract OCR等. 值得一提的是,ABBYY FineReader不仅正确率高(包括对中文的识别),而且还能保留大部分的排版效果,是一个非常强大的OCR商业软件.

然而,在诸多的OCR成品中,除了Tesseract OCR外,其他的都是闭源的、甚至是商业的软件,我们既无法将它们嵌入到我们自己的程序中,也无法对其进行改进. 开源的唯一选择是Google的Tesseract OCR,但它的识别效果不算很好,而且中文识别正确率偏低,有待进一步改进.

综上所述,不管是为了学术研究还是实际应用,都有必要对OCR技术进行探究和改进. 我们队伍将完整的OCR系统分为“特征提取”、“文字定位”、“光学识别”、“语言模型”四个方面,逐步进行解决,最终完成了一个可用的、完整的、用于印刷文字的OCR系统. 该系统可以初步用于电商、微信等平台的图片文字识别,以判断上面信息的真伪.

研究假设

在本文中,我们假设图像的文字部分有以下的特征:

点击阅读全文...

17 Jun

OCR技术浅探:1. 全文简述

写在前面:前面的博文已经提过,在上个月我参加了第四届泰迪杯数据挖掘竞赛,做的是A题,跟OCR系统有些联系,还承诺过会把最终的结果开源。最近忙于毕业、搬东西,一直没空整理这些内容,现在抽空整理一下。

把结果发出来,并不是因为结果有多厉害、多先进(相反,当我对比了百度的这篇论文《基于深度学习的图像识别进展:百度的若干实践》之后,才发现论文的内容本质上还是传统那一套,远远还跟不上时代的潮流),而是因为虽然OCR技术可以说比较成熟了,但网络上根本就没有对OCR系统进行较为详细讲解的文章,而本文就权当补充这部分内容吧。我一直认为,技术应该要开源才能得到发展(当然,在中国这一点也确实值得商榷,因为开源很容易造成山寨),不管是数学物理研究还是数据挖掘,我大多数都会发表到博客中,与大家交流。

点击阅读全文...

9 Jun

路径积分系列:5.例子和综述

路径积分方法为解决某些随机问题带来了新视角.

一个例子:股票价格模型

考虑有风险资产(如股票),在$t$时刻其价格为$S_t$,考虑的时间区间为$[0,T]$,0表示初始时间,$T$表示为到期日. $S_t$看作是随时间变化的连续时间变量,并服从下列随机微分方程:
$$dS_t^0=rS_t^0 dt;\quad dS_t=S_t(\mu dt+\sigma dW_t).\tag{70}$$
其中,$\mu$和$\sigma$是两个常量,$W_t$是一个标准布朗运动.

关于$S_t$的方程是一个随机微分方程,一般解决思路是通过随机微积分. 随机微积分有别于一般的微积分的地方在于,随机微积分在做一阶展开的时候,不能忽略$dS_t^2$项,因为$dW_t^2=dt$. 比如,设$S_t=e^{x_t}$,则$x_t=\ln S_t$
$$\begin{aligned}dx_t=&\ln(S_t+dS_t)-\ln S_t=\frac{dS_t}{S_t}-\frac{dS_t^2}{2S_t^2}\\
=&\frac{S_t(\mu dt+\sigma dW_t)}{S_t}-\frac{[S_t(\mu dt+\sigma dW_t)]^2}{2S_t^2}\\
=&\mu dt+\sigma dW_t-\frac{1}{2}\sigma^2 dW_t^2\quad(\text{其余项均低于}dt\text{阶})\\
=&\left(\mu-\frac{1}{2}\sigma^2\right) dt+\sigma dW_t\end{aligned}
,\tag{71}$$

点击阅读全文...

9 Jun

路径积分系列:4.随机微分方程

本章将路径积分用于随机微分方程,并且得到了与不对称随机游走一样的结果,从而证明了它与该模型的等价性.

将路径积分用于随机微分方程的研究,这一思路由来已久. 费曼在他的著作[5]中,已经建立了路径积分与线性随机微分方程的关系. 而对于非线性的情况,也有不少研究,但比较混乱,如文献[8]甚至给出了错误的结果.

本文从路径积分的离散化概念出发,明确地建立了两个路径积分微元的雅可比行列式关系,从而对非线性随机微分方程也建立了路径积分. 本文的结果跟文献[9]的结果是一致的.

概念

本文所研究的仅仅是随机常微分方程,它与一般的常微分方程的区别在于布朗运动项的引入,如常见的一类随机微分方程为
$$dx(t)=p(x(t),t)dt + \sqrt{\alpha} dW_t.\tag{48}$$
其中$W_t$代表着一个标准的布朗运动. 由于引入了随机项,所以解$x(t)$不再是确定的,而是有一定的概率分布.

在对随机微分方程中,感兴趣的量有很多,比如关于$x$的某个量的期望、方差,或者稳定性,等等. 随机微分方程领域中有各种分析的技巧,但是显然,直接求出$x(t)$的概率分布后对概率分布进行研究,是最理想最容易的方案. 路径积分正是给出了求概率分布的一个方法.

点击阅读全文...

2 Jun

路径积分系列:3.路径积分

路径积分是量子力学的一种描述方法,源于物理学家费曼[5],它是一种泛函积分,它已经成为现代量子理论的主流形式. 近年来,研究人员对它的兴趣愈发增加,尤其是它在量子领域以外的应用,出现了一些著作,如[7]. 但在国内了解路径积分的人并不多,很多量子物理专业的学生可能并没有听说过路径积分.

从数学角度来看,路径积分是求偏微分方程的Green函数的一种方法. 我们知道,在偏微分方程的研究中,如果能够求出对应的Green函数,那么对偏微分方程的研究会大有帮助,而通常情况下Green函数并不容易求解. 但构建路径积分只需要无穷小时刻的Green函数,因此形式和概念上都相当简单.

本章并没有新的内容,只是做了一个尝试:从随机游走问题出发,给出路径积分的一个简明而直接的介绍,展示了如何将抛物型的偏微分方程问题转化为路径积分形式.

从点的概率到路径的概率

在上一章对随机游走的研究中,我们得出从$x_0$出发,$t$时间后,走到$x_n$处的概率密度为
$$\frac{1}{\sqrt{2\pi \alpha T}}\exp\left(-\frac{(x_n-x_0)^2}{2\alpha t}\right).\tag{22}$$
这是某时刻某点到另一个时刻另一点的概率,在数学上,我们称之为扩散方程$(21)$的传播子,或者Green函数.

点击阅读全文...