将“Softmax+交叉熵”推广到多标签分类问题
By 苏剑林 | 2020-04-25 | 337898位读者 |(注:本文的相关内容已整理成论文《ZLPR: A Novel Loss for Multi-label Classification》,如需引用可以直接引用英文论文,谢谢。)
一般来说,在处理常规的多分类问题时,我们会在模型的最后用一个全连接层输出每个类的分数,然后用softmax激活并用交叉熵作为损失函数。在这篇文章里,我们尝试将“Softmax+交叉熵”方案推广到多标签分类场景,希望能得到用于多标签分类任务的、不需要特别调整类权重和阈值的loss。
单标签到多标签 #
一般来说,多分类问题指的就是单标签分类问题,即从$n$个候选类别中选$1$个目标类别。假设各个类的得分分别为$s_1,s_2,
\dots,s_n$,目标类为$t\in\{1,2,\dots,n\}$,那么所用的loss为
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_{i=1}^n e^{s_i}}= - s_t + \log \sum\limits_{i=1}^n e^{s_i}\label{eq:log-softmax}\end{equation}
这个loss的优化方向是让目标类的得分$s_t$变为$s_1,s_2,\dots,s_t$中的最大值。关于softmax的相关内容,还可以参考《寻求一个光滑的最大值函数》、《函数光滑化杂谈:不可导函数的可导逼近》等文章。
现在我们转到多标签分类问题,即从$n$个候选类别中选$k$个目标类别。这种情况下我们一种朴素的做法是用sigmoid激活,然后变成$n$个二分类问题,用二分类的交叉熵之和作为loss。显然,当$n\gg k$时,这种做法会面临着严重的类别不均衡问题,这时候需要一些平衡策略,比如手动调整正负样本的权重、focal loss等。训练完成之后,还需要根据验证集来进一步确定最优的阈值。
这时候,一个很自然的困惑就是:为什么“$n$选$k$”要比“$n$选$1$”多做那么多工作?
笔者认为这是很不科学的事情,毕竟直觉上$n$选$k$应该只是$n$选$1$自然延伸,所以不应该要比$n$要多做那么多事情,就算$n$选$k$要复杂一些,难度也应该是慢慢过渡的,但如果变成多个二分类的话,$n$选$1$反而是最难的,因为这时候类别最不均衡。而从形式上来看,单标签分类比多标签分类要容易,就是因为单标签有“Softmax+交叉熵”可以用,它不会存在类别不平衡的问题,而多标签分类中的“sigmoid+交叉熵”就存在不平衡的问题。
所以,理想的解决办法应该就是将“Softmax+交叉熵”推广到多标签分类上去。
众里寻她千百度 #
为了考虑这个推广,笔者进行了多次尝试,也否定了很多结果,最后确定了一个相对来说比较优雅的方案:构建组合形式的softmax来作为单标签softmax的推广。在这部分内容中,我们会先假设$k$是一个固定的常数,然后再讨论一般情况下$k$的自动确定方案,最后确实能得到一种有效的推广形式。
组合softmax #
首先,我们考虑$k$是一个固定常数的情景,这意味着预测的时候,我们直接输出得分最高的$k$个类别即可。那训练的时候呢?作为softmax的自然推广,我们可以考虑用下式作为loss:
\begin{equation}-\log \frac{e^{s_{t_1}+s_{t_2}+\dots+s_{t_k}}}{\sum\limits_{1\leq i_1 < i_2 < \cdots < i_k\leq n}e^{s_{i_1}+s_{i_2}+\dots+s_{i_k}}}=\log Z_k - (s_{t_1}+s_{t_2}+\dots+s_{t_k})\end{equation}
其中$t_1,t_2,\dots,t_k$是$k$个目标标签,$Z_k = \sum\limits_{1\leq i_1 < i_2 < \cdots < i_k\leq n}e^{s_{i_1}+s_{i_2}+\dots+s_{i_k}}$是配分函数。很显然,上式是以任何$k$个类别总得分$s_{i_1}+s_{i_2}+\dots+s_{i_k}$为基本单位所构造的softmax,所以它算是单标签softmax的合理推广。又或者理解为还是一个单标签分类问题,只不过这是$C_n^k$选$1$问题。
在这个方案之中,比较困难的地方是$Z_k$的计算,它是$C_n^k$项总得分的指数和。不过,我们可以利用牛顿恒等式来帮助我们递归计算。设$S_k = \sum\limits_{i=1}^n e^{k s_i}$,那么
\begin{equation}\begin{aligned}
Z_1 =&\, S_1\\
2Z_2 =&\, Z_1 S_1 - S_2\\
3Z_3 = &\, Z_2 S_1 - Z_1 S_2 + S_3\\
\vdots\\
k Z_k = &\, Z_{k-1} S_1 - Z_{k-2} S_2 + \dots + (-1)^{k-2} Z_1 S_{k-1} + (-1)^{k-1} S_k
\end{aligned}\end{equation}
所以为了计算$Z_k$,我们只需要递归计算$k$步,这可以在合理的时间内计算出来。预测阶段,则直接输出分数最高的$k$个类就行。
自动确定阈值 #
上述讨论的是输出数目固定的多标签分类问题,但一般的多标签分类的目标标签数是不确定的。为此,我们确定一个最大目标标签数$K\geq k$,并添加一个$0$标签作为填充标签,此时loss变为
\begin{equation}\log \overline{Z}_K - (s_{t_1}+s_{t_2}+\dots+s_{t_k}+\underbrace{s_0+\dots+s_0}_{K-k\text{个}})\end{equation}
而
\begin{equation}\begin{aligned}
\overline{Z}_K =&\, \sum\limits_{1\leq i_1 < i_2 < \cdots < i_K\leq n}e^{s_{i_1}+s_{i_2}+\dots+s_{i_K}} + \sum\limits_{0 = i_1 = \dots = i_j < i_{j+1} < \cdots < i_K\leq n}e^{s_{i_1}+s_{i_2}+\dots+s_{i_K}}\\
=&\, Z_K + e^{s_0} \overline{Z}_{K-1}
\end{aligned}\end{equation}
看上去很复杂,其实很简单,还是以$K$个类别总得分为基本单位,但是允许且仅允许$0$类重复出现。预测的时候,仍然是输出分数最大的$K$个类,但允许重复输出$0$类,等价的效果是以$s_0$为阈值,只输出得分大于$s_0$的类。最后的式子显示$\overline{Z}_K$也可以通过递归来计算,所以实现上是没有困难的。
暮然回首阑珊处 #
看上去“众里寻她千百度”终究是有了结果:理论有了,实现也不困难,接下来似乎就应该做实验看效果了吧?效果好的话,甚至可以考虑发paper了吧?看似一片光明前景呢!然而~
幸运或者不幸,在验证了它的有效性的同时,笔者请教了一些前辈大神,在他们的提示下翻看了之前没细看的Circle Loss,看到了它里边统一的loss形式(原论文的公式(1)),然后意识到了这个统一形式蕴含了一个更简明的推广方案。
所以,不幸的地方在于,已经有这么一个现成的更简明的方案了,所以不管如何“众里寻她千百度”,都已经没有太大意义了;而幸运的地方在于,还好找到了这个更好的方案,要不然屁颠屁颠地把前述方案写成文章发出来,还不如现成的方案简单有效,那时候丢人就丢大发了~
统一的loss形式 #
让我们换一种形式看单标签分类的交叉熵$\eqref{eq:log-softmax}$:
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_{i=1}^n e^{s_i}}=-\log \frac{1}{\sum\limits_{i=1}^n e^{s_i-s_t}}=\log \sum\limits_{i=1}^n e^{s_i-s_t}=\log \left(1 + \sum\limits_{i=1,i\neq t}^n e^{s_i-s_t}\right)\end{equation}
为什么这个loss会有效呢?在文章《寻求一个光滑的最大值函数》、《函数光滑化杂谈:不可导函数的可导逼近》中我们都可以知道,$\text{logsumexp}$实际上就是$\max$的光滑近似,所以我们有:
\begin{equation}\log \left(1 + \sum\limits_{i=1,i\neq t}^n e^{s_i-s_t}\right)\approx \max\begin{pmatrix}0 \\ s_1 - s_t \\ \vdots \\ s_{t-1} - s_t \\ s_{t+1} - s_t \\ \vdots \\ s_n - s_t\end{pmatrix}\end{equation}
这个loss的特点是,所有的非目标类得分$\{s_1,\cdots,s_{t-1},s_{t+1},\cdots,s_n\}$跟目标类得分$\{s_t\}$两两作差比较,它们的差的最大值都要尽可能小于零,所以实现了“目标类得分都大于每个非目标类的得分”的效果。
所以,假如是有多个目标类的多标签分类场景,我们也希望“每个目标类得分都不小于每个非目标类的得分”,所以下述形式的loss就呼之欲出了:
\begin{equation}\log \left(1 + \sum\limits_{i\in\Omega_{neg},j\in\Omega_{pos}} e^{s_i-s_j}\right)=\log \left(1 + \sum\limits_{i\in\Omega_{neg}} e^{s_i}\sum\limits_{j\in\Omega_{pos}} e^{-s_j}\right)\label{eq:unified}\end{equation}
其中$\Omega_{pos},\Omega_{neg}$分别是样本的正负类别集合。这个loss的形式很容易理解,就是我们希望$s_i < s_j$,就往$\log$里边加入$e^{s_i - s_j}$这么一项。如果补上缩放因子$\gamma$和间隔$m$,就得到了Circle Loss论文里边的统一形式:
\begin{equation}\log \left(1 + \sum\limits_{i\in\Omega_{neg},j\in\Omega_{pos}} e^{\gamma(s_i-s_j + m)}\right)=\log \left(1 + \sum\limits_{i\in\Omega_{neg}} e^{\gamma (s_i + m)}\sum\limits_{j\in\Omega_{pos}} e^{-\gamma s_j}\right)\end{equation}
说个题外话,上式就是Circle Loss论文的公式(1),但原论文的公式(1)不叫Circle Loss,原论文的公式(4)才叫Circle Loss,所以不能把上式叫做Circle Loss。但笔者认为,整篇论文之中最有意思的部分还数公式(1)。
用于多标签分类 #
$\gamma$和$m$一般都是度量学习中才会考虑的,所以这里我们还是只关心式$\eqref{eq:unified}$。如果$n$选$k$的多标签分类中$k$是固定的话,那么直接用式$\eqref{eq:unified}$作为loss就行了,然后预测时候直接输出得分最大的$k$个类别。
对于$k$不固定的多标签分类来说,我们就需要一个阈值来确定输出哪些类。为此,我们同样引入一个额外的$0$类,希望目标类的分数都大于$s_0$,非目标类的分数都小于$s_0$,而前面已经已经提到过,“希望$s_i < s_j$就往$\log$里边加入$e^{s_i - s_j}$”,所以现在式$\eqref{eq:unified}$变成:
\begin{equation}\begin{aligned}
&\log \left(1 + \sum\limits_{i\in\Omega_{neg},j\in\Omega_{pos}} e^{s_i-s_j}+\sum\limits_{i\in\Omega_{neg}} e^{s_i-s_0}+\sum\limits_{j\in\Omega_{pos}} e^{s_0-s_j}\right)\\
=&\log \left(e^{s_0} + \sum\limits_{i\in\Omega_{neg}} e^{s_i}\right) + \log \left(e^{-s_0} + \sum\limits_{j\in\Omega_{pos}} e^{-s_j}\right)\\
\end{aligned}\end{equation}
如果指定阈值为0,那么就简化为
\begin{equation}\log \left(1 + \sum\limits_{i\in\Omega_{neg}} e^{s_i}\right) + \log \left(1 + \sum\limits_{j\in\Omega_{pos}} e^{-s_j}\right)\label{eq:final}\end{equation}
这便是我们最终得到的Loss形式了——“softmax + 交叉熵”在多标签分类任务中的自然、简明的推广,它没有类别不均衡现象,因为它不是将多标签分类变成多个二分类问题,而是变成目标类别得分与非目标类别得分的两两比较,并且借助于$\text{logsumexp}$的良好性质,自动平衡了每一项的权重。
这里给出Keras下的参考实现:
def multilabel_categorical_crossentropy(y_true, y_pred):
"""多标签分类的交叉熵
说明:y_true和y_pred的shape一致,y_true的元素非0即1,
1表示对应的类为目标类,0表示对应的类为非目标类。
警告:请保证y_pred的值域是全体实数,换言之一般情况下y_pred
不用加激活函数,尤其是不能加sigmoid或者softmax!预测
阶段则输出y_pred大于0的类。如有疑问,请仔细阅读并理解
本文。
"""
y_pred = (1 - 2 * y_true) * y_pred
y_pred_neg = y_pred - y_true * 1e12
y_pred_pos = y_pred - (1 - y_true) * 1e12
zeros = K.zeros_like(y_pred[..., :1])
y_pred_neg = K.concatenate([y_pred_neg, zeros], axis=-1)
y_pred_pos = K.concatenate([y_pred_pos, zeros], axis=-1)
neg_loss = K.logsumexp(y_pred_neg, axis=-1)
pos_loss = K.logsumexp(y_pred_pos, axis=-1)
return neg_loss + pos_loss
所以,结论就是 #
所以,最终结论就是式$\eqref{eq:final}$,它就是本文要寻求的多标签分类问题的统一loss,欢迎大家测试并报告效果。笔者也实验过几个多标签分类任务,均能媲美精调权重下的二分类方案。
要提示的是,除了标准的多标签分类问题外,还有一些常见的任务形式也可以认为是多标签分类,比如基于0/1标注的序列标注,典型的例子是笔者的“半指针-半标注”标注设计。因此,从这个角度看,能被视为多标签分类来测试式$\eqref{eq:final}$的任务就有很多了,笔者也确实在之前的三元组抽取例子task_relation_extraction.py中尝试了$\eqref{eq:final}$,最终能取得跟这里一致的效果。
当然,最后还是要说明一下,虽然理论上式$\eqref{eq:final}$作为多标签分类的损失函数能自动地解决很多问题,但终究是不存在绝对完美、保证有提升的方案,所以当你用它替换掉你原来多标签分类方案时,也不能保证一定会有提升,尤其是当你原来已经通过精调权重等方式处理好类别不平衡问题的情况下,式$\eqref{eq:final}$的收益是非常有限的。毕竟式$\eqref{eq:final}$的初衷,只是让我们在不需要过多调参的的情况下达到大部分的效果。
转载到请包括本文地址:https://spaces.ac.cn/archives/7359
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Apr. 25, 2020). 《将“Softmax+交叉熵”推广到多标签分类问题 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/7359
@online{kexuefm-7359,
title={将“Softmax+交叉熵”推广到多标签分类问题},
author={苏剑林},
year={2020},
month={Apr},
url={\url{https://spaces.ac.cn/archives/7359}},
}
May 1st, 2020
请问一下,这里类别不均衡是如何定义的?是不是像二分类里面正例和反例比率差别太大。二分类里面不是也有这个问题,需要focal loss之类的方法吗?
这里的类别不均衡,指的是在多标签分类中,目标标签的个数比非目标标签的少得多。
May 1st, 2020
没有完全看明白, 不过还有个额外的问题?
如果k个标签有约束,该怎么调整loss, 比如 k个标签中的某一个组,这个组有m个标签, 必须有且只有一个被predict
那你变成多个$m$选1问题不就行了~
May 1st, 2020
最后得到的loss的形式,和pytorch文档里面的MultiLabelMarginLoss似乎非常像?,https://pytorch.org/docs/stable/nn.html#multilabelmarginloss
看起来不像~也不相互近似。
本文的loss,重点是把差值$s_i - s_j$放在logsumexp里边,借助logsumexp自动给每一项调节权重(它会自动突出误差更大的项)。而如果像链接中的MultiLabelMarginLoss,则是把求和放在最外边,依然会存在不均衡问题,跟多个二分类交叉熵没有本质区别。
May 2nd, 2020
如果计算$\frac{\frac{e^{i\theta}+e^{-i\theta}}{2}}{\sum_i \frac{e^{i\theta}+e^{-i\theta}}{2}}$,可以按照您的思路进行吗?
上式的和式有误$\frac{\frac{e^{i\theta}+e^{-i\theta}}{2}}{\sum_1^n \frac{e^{i\theta}+e^{-i\theta}}{2}}$
$\theta$与和式的n有关
$i$是虚数单位
May 2nd, 2020
也就是说求$log\frac{\frac{e^{i\theta}+e^{-i\theta}}{2}}{\sum_i \frac{e^{i\theta}+e^{-i\theta}}{2}}$可以按照交叉熵来处理吗?
应该是$log\frac{\frac{e^{i\theta}+e^{-i\theta}}{2}}{\sum_1^n \frac{e^{i\theta}+e^{-i\theta}}{2}}$能否按照交叉熵思路来处理吗?
不知道你想表达什么~
May 2nd, 2020
苏神,如果按您现在的做法,如果假设s_0为0,这样对于s_i的值必须大于0,s_j的值必须小于0,是否意味这不能模型的输出后跟sigmoid函数,而是直接linear的输出?那我如果s_0换成0.5的话,是不是可以用sogmoid的输出了?谢谢了!
本来就是直接线性,不能用sigmoid。设为0.5也不应该用sigmoid。
苏神,如果模型接sigmod,是不是就又走回了 将多标签分类变成多个二分类问题 这条老路上了。
所以就说不能sigmoid呀
May 3rd, 2020
请问 那个代码的第2行为什么要减去1e12啊
参考: https://kexue.fm/archives/6810#Mask
苏神 请问你可以把你用这个损失函数的测试代码的整个代码发我看看么?我测试了很久 出了一点问题
什么代码?在Keras中就是 model.compile(loss=multilabel_categorical_crossentropy, optimizer='adam') 这样咯。
这个loss怎样用在关系抽取任务上呢,苏神能给个例子吗
May 4th, 2020
苏神,关于式(2)与式(4)的等价性我觉得还不够清楚,也许是我没get到某个推导的point。。。另外,我之前也推导过关于circle loss与最终的multi-label统一的loss的关系。我再推荐一篇论文 “Improving pairwise ranking for multi- label image classification”(CVPR 2017),这篇论文的loss依然是在这个framework下的special case。
1、$(2)$与$(4)$在原理上等价,计算上不等价。比如,对于4选2问题,候选标签为$(1,2), (1,3), (1, 4), (2,3), (2,4), (3,4)$,如果是标签数不超过2个,那么候选标签为$(1,2), (1,3), (1, 4), (2,3), (2,4), (3,4), (0,1), (0,2), (0,3), (0,4), (0,0)$,关键点是“引入了$0$标签,$0$标签可以重复出现以达到填充作用“;
2、谢谢推荐论文。因为我也不是主要研究这个,所以也就没有刻意去追根溯源了。
感谢苏神回复!
我没有说清楚。。那篇论文是你现在导出的统一loss的special case。。所以也不用看。。我觉得你写的很多文章都给出了当前研究没有意识到的一些insights,非常棒!
谢谢,欢迎多交流。
May 6th, 2020
好文章~
我有个疑惑,为什么“softmax+交叉熵”能解决类别不平衡问题而“sigmoid+交叉熵”会存在类别不平衡问题呢?
因为logsumexp自带平衡作用,会自动突出误差更大的项。
您好,苏神,我是新入坑的小迷弟,你可以给我再解释一下logsumexp是如何平衡,如何自动突出误差更大的项从而解决类别不平衡问题的吗,谢谢!
logsumexp是max的光滑近似。
May 10th, 2020
根据公式11,multilabel_categorical_crossentropy实现中 y_pred_neg = (1 - y_true) * y_pred ,其中y_pred为原始预测值。这样理解对吗??
def multilabel_categorical_crossentropy(y_true, y_pred):
"""多标签分类的交叉熵
说明:y_true和y_pred的shape一致,y_true的元素非0即1,
1表示对应的类为目标类,0表示对应的类为非目标类。
"""
y_pred_neg = (1 - y_true) * y_pred
y_pred_pos = -y_true*y_pred
zeros = K.zeros_like(y_pred[..., :1])
y_pred_neg = K.concatenate([y_pred_neg, zeros], axis=-1)
y_pred_pos = K.concatenate([y_pred_pos, zeros], axis=-1)
neg_loss = K.logsumexp(y_pred_neg, axis=-1)
pos_loss = K.logsumexp(y_pred_pos, axis=-1)
return neg_loss + pos_loss
对于logsumexp来说,负无穷才等价于0,比如$\text{logsumexp}([a,b,c]) = \text{logsumexp}([a,b,c,-\infty])$。