变分自编码器(二):从贝叶斯观点出发
By 苏剑林 | 2018-03-28 | 468336位读者 |源起 #
前几天写了博文《变分自编码器(一):原来是这么一回事》,从一种比较通俗的观点来理解变分自编码器(VAE),在那篇文章的视角中,VAE跟普通的自编码器差别不大,无非是多加了噪声并对噪声做了约束。然而,当初我想要弄懂VAE的初衷,是想看看究竟贝叶斯学派的概率图模型究竟是如何与深度学习结合来发挥作用的,如果仅仅是得到一个通俗的理解,那显然是不够的。
所以我对VAE继续思考了几天,试图用更一般的、概率化的语言来把VAE说清楚。事实上,这种思考也能回答通俗理解中无法解答的问题,比如重构损失用MSE好还是交叉熵好、重构损失和KL损失应该怎么平衡,等等。
建议在阅读《变分自编码器(一):原来是这么一回事》后对本文进行阅读,本文在内容上尽量不与前文重复。
准备 #
在进入对VAE的描述之前,我觉得有必要把一些概念性的内容讲一下。
数值计算vs采样计算 #
对于不是很熟悉概率统计的读者,容易混淆的两个概念应该是数值计算和采样计算,也有读者在《三味Capsule:矩阵Capsule与EM路由》出现过同样的疑惑。比如已知概率密度函数$p(x)$,那么$x$的期望也就定义为
$$\mathbb{E}[x] = \int x p(x)dx\tag{1}$$
如果要对它进行数值计算,也就是数值积分,那么可以选若干个有代表性的点$x_0 < x_1 < x_2 < \dots < x_n$,然后得到
$$\mathbb{E}[x] \approx \frac{1}{x_n - x_0}\sum_{i=1}^n x_i p(x_i) \left(x_i - x_{i-1}\right)\tag{2}$$
这里不讨论“有代表性”是什么意思,也不讨论提高数值计算精度的方法。这样写出来,是为了跟采样计算对比。如果从$p(x)$中采样若干个点$x_1,x_2,\dots,x_n$,那么我们有
$$\mathbb{E}[x] \approx \frac{1}{n}\sum_{i=1}^n x_i,\quad x_i \sim p(x)\tag{3}$$
我们可以比较$(2)$跟$(3)$,它们的主要区别是$(2)$中包含了概率的计算而$(3)$中仅有$x$的计算,这是因为在$(3)$中$x_i$是从$p(x)$中依概率采样出来的,概率大的$x_i$出现的次数也多,所以可以说采样的结果已经包含了$p(x)$在里边,就不用再乘以$p(x_i)$了。
更一般地,我们可以写出
$$\mathbb{E}_{x\sim p(x)}[f(x)] = \int f(x)p(x)dx \approx \frac{1}{n}\sum_{i=1}^n f(x_i),\quad x_i\sim p(x)\tag{4}$$
这就是蒙特卡洛模拟的基础。
KL散度及变分 #
我们通常用KL散度来度量两个概率分布$p(x)$和$q(x)$之间的差异,定义为
$$KL\Big(p(x)\Big\Vert q(x)\Big) = \int p(x)\ln \frac{p(x)}{q(x)} dx=\mathbb{E}_{x\sim p(x)}\left[\ln \frac{p(x)}{q(x)}\right]\tag{5}$$
KL散度的主要性质是非负性,如果固定$p(x)$,那么$KL\Big(p(x)\Big\Vert q(x)\Big)=0 \Leftrightarrow p(x)=q(x)$;如果固定$q(x)$,同样有$KL\Big(p(x)\Big\Vert q(x)\Big)=0 \Leftrightarrow p(x)=q(x)$,也就是不管固定哪一个,最小化KL散度的结果都是两者尽可能相等。这一点的严格证明要用到变分法,而事实上VAE中的V(变分)就是因为VAE的推导就是因为用到了KL散度(进而也包含了变分法)。
当然,KL散度有一个比较明显的问题,就是当$q(x)$在某个区域等于0,而$p(x)$在该区域不等于0,那么KL散度就出现无穷大。这是KL散度的固有问题,我们只能想办法规避它,比如隐变量的先验分布我们用高斯分布而不是均匀分布,原因便在此,这一点我们在前文《变分自编码器(一):原来是这么一回事》中也提到过了。
顺便说点题外话,度量两个概率分布之间的差异只有KL散度吗?当然不是,我们可以看维基百科的Statistical Distance一节,里边介绍了不少分布距离,比如有一个很漂亮的度量,我们称之为巴氏距离(Bhattacharyya distance),定义为
$$D_B\Big(p(x), q(x)\Big)=-\ln\int \sqrt{p(x)q(x)} dx\tag{6}$$
这个距离不仅对称,还没有KL散度的无穷大问题。然而我们还是选用KL散度,因为我们不仅要理论上的漂亮,还要实践上的可行,KL散度可以写成期望的形式,这允许我们对其进行采样计算,相反,巴氏距离就没那么容易了,读者要是想把下面计算过程中的KL散度替换成巴氏距离,就会发现寸步难行了。
本文的符号表 #
讲解VAE免不了出现大量的公式和符号,这里将部分式子的含义提前列举如下:
$$\begin{array}{c|c}
\hline
x_k, z_k & \text{表示随机变量}x,z\text{的第}k\text{个样本}\\
\hline
x_{(k)}, z_{(k)} & \text{表示多元变量}x,z\text{的第}k\text{个分量}\\
\hline
\mathbb{E}_{x\sim p(x)}[f(x)] & \text{表示对}f(x)\text{算期望,其中}x\text{的分布为}p(x)\\
\hline
KL\Big(p(x)\Big\Vert q(x)\Big)& \text{两个分布的}KL\text{散度}\\
\hline
\Vert x\Vert^2& \text{向量}x\text{的}l^2\text{范数,也就是我们通常说的模长的平方}\\
\hline
\mathcal{L}& \text{本文的损失函数的符号}\\
\hline
D,d & D\text{是输入}x\text{的维度,}d\text{是隐变量}z\text{的维度}\\
\hline
\end{array}$$
框架 #
这里通过直接对联合分布进行近似的方式,简明快捷地给出了VAE的理论框架。
直面联合分布 #
出发点依然没变,这里再重述一下。首先我们有一批数据样本$\{x_1,\dots,x_n\}$,其整体用$x$来描述,我们希望借助隐变量$z$描述$x$的分布$\tilde{p}(x)$:
$$q(x)=\int q(x|z)q(z)dz,\quad q(x,z) = q(x|z)q(z)\tag{7}$$
这里$q(z)$是先验分布(标准正态分布),目的是希望$q(x)$能逼近$\tilde{p}(x)$。这样(理论上)我们既描述了$\tilde{p}(x)$,又得到了生成模型$q(x|z)$,一举两得。
接下来就是利用KL散度进行近似。但我一直搞不明白的是,为什么从原作《Auto-Encoding Variational Bayes》开始,VAE的教程就聚焦于后验分布$p(z|x)$的描述?也许是受了EM算法的影响,这个问题上不能应用EM算法,就是因为后验分布$p(z|x)$难以计算,所以VAE的作者就聚焦于$p(z|x)$的推导。
但事实上,直接来对$p(x,z)$进行近似是最为干脆的。具体来说,定义$p(x,z)=\tilde{p}(x)p(z|x)$,我们设想用一个联合概率分布$q(x,z)$来逼近$p(x,z)$,那么我们用KL散度来看它们的距离:
$$KL\Big(p(x,z)\Big\Vert q(x,z)\Big) = \iint p(x,z)\ln \frac{p(x,z)}{q(x,z)} dzdx\tag{8}$$
KL散度是我们的终极目标,因为我们希望两个分布越接近越好,所以KL散度越小越好。当然,由于现在$p(x,z)$也有参数,所以不单单是$q(x,z)$来逼近$p(x,z)$,$p(x,z)$也会主动来逼近$q(x,z)$,两者是相互接近。
于是我们有
$$\begin{aligned}KL\Big(p(x,z)\Big\Vert q(x,z)\Big) =& \int \tilde{p}(x) \left[\int p(z|x)\ln \frac{\tilde{p}(x)p(z|x)}{q(x,z)} dz\right]dx\\
=& \mathbb{E}_{x\sim \tilde{p}(x)} \left[\int p(z|x)\ln \frac{\tilde{p}(x)p(z|x)}{q(x,z)} dz\right]
\end{aligned}\tag{9}$$
这样一来利用$(4)$式,把各个$x_i$代入就可以进行计算了,这个式子还可以进一步简化,因为$\ln \frac{\tilde{p}(x)p(z|x)}{q(x,z)}=\ln \tilde{p}(x) + \ln \frac{p(z|x)}{q(x,z)}$,而
$$\begin{aligned}\mathbb{E}_{x\sim \tilde{p}(x)} \left[\int p(z|x)\ln \tilde{p}(x)dz\right] =& \mathbb{E}_{x\sim \tilde{p}(x)} \left[\ln \tilde{p}(x)\int p(z|x)dz\right]\\
=&\mathbb{E}_{x\sim \tilde{p}(x)} \big[\ln \tilde{p}(x)\big]
\end{aligned}\tag{10}$$
注意这里的$\tilde{p}(x)$是根据样本$x_1,x_2,\dots,x_n$确定的关于$x$的先验分布,尽管我们不一定能准确写出它的形式,但它是确定的、存在的,因此这一项只是一个常数,所以可以写出
$$\mathcal{L}=KL\Big(p(x,z)\Big\Vert q(x,z)\Big) - \text{常数}= \mathbb{E}_{x\sim \tilde{p}(x)} \left[\int p(z|x)\ln \frac{p(z|x)}{q(x,z)} dz\right]\tag{11}$$
目前最小化$KL\Big(p(x,z)\Big\Vert q(x,z)\Big)$也就等价于最小化$\mathcal{L}$。注意减去的常数为$\mathbb{E}_{x\sim \tilde{p}(x)} \big[\ln \tilde{p}(x)\big]$,所以$\mathcal{L}$拥有下界$-\mathbb{E}_{x\sim \tilde{p}(x)} \big[\ln \tilde{p}(x)\big]$~注意到$\tilde{p}(x)$不一定是概率,在连续情形时$\tilde{p}(x)$是概率密度,它可以大于1也可以小于1,所以$-\mathbb{E}_{x\sim \tilde{p}(x)} \big[\ln \tilde{p}(x)\big]$不一定是非负,即loss可能是负数。
你的VAE已经送达 #
到这里,我们回顾初衷——为了得到生成模型,所以我们把$q(x,z)$写成$q(x|z)q(z)$,于是就有
$$\begin{aligned}\mathcal{L} =& \mathbb{E}_{x\sim \tilde{p}(x)} \left[\int p(z|x)\ln \frac{p(z|x)}{q(x|z)q(z)} dz\right]\\
=&\mathbb{E}_{x\sim \tilde{p}(x)} \left[-\int p(z|x)\ln q(x|z)dz+\int p(z|x)\ln \frac{p(z|x)}{q(z)}dz\right]\end{aligned}\tag{12}$$
再简明一点,那就是
$$\begin{aligned}\mathcal{L} = &\mathbb{E}_{x\sim \tilde{p}(x)} \left[\mathbb{E}_{z\sim p(z|x)}\big[-\ln q(x|z)\big]+\mathbb{E}_{z\sim p(z|x)}\Big[\ln \frac{p(z|x)}{q(z)}\Big]\right]\\
= &\mathbb{E}_{x\sim \tilde{p}(x)} \Bigg[\mathbb{E}_{z\sim p(z|x)}\big[-\ln q(x|z)\big]+KL\Big(p(z|x)\Big\Vert q(z)\Big)\Bigg]
\end{aligned}\tag{13}$$
看,括号内的不就是VAE的损失函数嘛?只不过我们换了个符号而已。我们就是要想办法找到适当的$q(x|z)$和$q(z)$使得$\mathcal{L}$最小化。
再回顾一下整个过程,我们几乎都没做什么“让人难以想到”的形式变换,但VAE就出来了。所以,没有必要去对后验分布进行分析,直面联合分布,我们能更快捷地到达终点。
不能搞分裂~ #
鉴于$(13)$式的特点,我们也许会将$\mathcal{L}$分开为两部分看:$\mathbb{E}_{z\sim p(z|x)}\big[-\ln q(x|z)\big]$的期望和$KL\Big(p(z|x)\Big\Vert q(z)\Big)$的期望,并且认为问题变成了两个loss的分别最小化。
然而这种看法是不妥的,因为$KL\Big(p(z|x)\Big\Vert q(z)\Big)=0$意味着$z$没有任何辨识度,所以$-\ln q(x|z)$不可能小(预测不准),而如果$-\ln q(x|z)$小则$q(x|z)$大,预测准确,这时候$p(z|x)$不会太随机,即$KL\Big(p(z|x)\Big\Vert q(z)\Big)$不会小,所以这两部分的loss其实是相互拮抗的。所以,$\mathcal{L}$不能割裂来看,而是要整体来看,整个的$\mathcal{L}$越小模型就越接近收敛,而不能只单独观察某一部分的loss。
事实上,这正是GAN模型中梦寐以求的——有一个总指标能够指示生成模型的训练进程,在VAE模型中天然就具备了这种能力了,而GAN中要到WGAN才有这么一个指标~
实验 #
截止上面的内容,其实我们已经完成了VAE整体的理论构建。但为了要将它付诸于实验,还需要做一些工作。事实上原论文《Auto-Encoding Variational Bayes》也在这部分做了比较充分的展开,但遗憾的是,网上很多VAE教程都只是推导到$(13)$式就没有细说了。
后验分布近似 #
现在$q(z),q(x|z),p(z|x)$全都是未知的,连形式都还没确定,而为了实验,就得把$(13)$式的每一项都明确写出来。
首先,为了便于采样,我们假设$z\sim N(0,I)$,即标准的多元正态分布,这就解决了$q(z)$。那$q(x|z),p(z|x)$呢?一股脑用神经网络拟合吧。
注:本来如果已知$q(x|z)$和$q(z)$,那么$p(z|x)$最合理的估计应该是:
$$\hat{p}(z|x) = q(z|x) = \frac{q(x|z)q(z)}{q(x)} = \frac{q(x|z)q(z)}{\int q(x|z)q(z)dz}\tag{14}$$
这其实就是EM算法中的后验概率估计的步骤,具体可以参考《从最大似然到EM算法:一致的理解方式》。但事实上,分母的积分几乎不可能完成,因此这是行不通的。所以干脆用一般的网络去近似它,这样不一定能达到最优,但终究是一个可用的近似。
具体来说,我们假设$p(z|x)$也是(各分量独立的)正态分布,其均值和方差由$x$来决定,这个“决定”,就是一个神经网络:
$$p(z|x)=\frac{1}{\prod\limits_{k=1}^d \sqrt{2\pi \sigma_{(k)}^2(x)}}\exp\left(-\frac{1}{2}\left\Vert\frac{z-\mu(x)}{\sigma(x)}\right\Vert^2\right)\tag{15}$$
这里的$\mu(x),\sigma^2(x)$是输入为$x$、输出分别为均值和方差的神经网络,其中$\mu(x)$就起到了类似encoder的作用。既然假定了高斯分布,那么$(13)$式中的KL散度这一项就可以先算出来:
$$KL\Big(p(z|x)\Big\Vert q(z)\Big)=\frac{1}{2} \sum_{k=1}^d \Big(\mu_{(k)}^2(x) + \sigma_{(k)}^2(x) - \ln \sigma_{(k)}^2(x) - 1\Big)\tag{16}$$
也就是我们所说的KL loss,这在上一篇文章已经给出。
生成模型近似 #
现在只剩生成模型部分$q(x|z)$了,该选什么分布呢?论文《Auto-Encoding Variational Bayes》给出了两种候选方案:伯努利分布或正态分布。
什么?又是正态分布?是不是太过简化了?然而并没有办法,因为我们要构造一个分布,而不是任意一个函数,既然是分布就得满足归一化的要求,而要满足归一化,又要容易算,我们还真没多少选择。
伯努利分布模型 #
首先来看伯努利分布,众所周知它其实就是一个二元分布:
$$p(\xi)=\left\{\begin{aligned}&\rho,\, \xi = 1;\\
&1-\rho,\, \xi = 0\end{aligned}\right.\tag{17}$$
所以伯努利分布只适用于$x$是一个多元的二值向量的情况,比如$x$是二值图像时(mnist可以看成是这种情况)。这种情况下,我们用神经网络$\rho(z)$来算参数$\rho$,从而得到
$$q(x|z)=\prod_{k=1}^D \Big(\rho_{(k)}(z)\Big)^{x_{(k)}} \Big(1 - \rho_{(k)}(z)\Big)^{1 - x_{(k)}}\tag{18}$$
这时候可以算出
$$-\ln q(x|z) = \sum_{k=1}^D \Big[- x_{(k)} \ln \rho_{(k)}(z) - (1-x_{(k)}) \ln \Big(1 -\rho_{(k)}(z)\Big)\Big]\tag{19}$$
这表明$\rho(z)$要压缩到0~1之间(比如用sigmoid激活),然后用交叉熵作为损失函数,这里$\rho(z)$就起到了类似decoder的作用。
正态分布模型 #
然后是正态分布,这跟$p(z|x)$是一样的,只不过$x,z$交换了位置:
$$q(x|z)=\frac{1}{\prod\limits_{k=1}^D \sqrt{2\pi \tilde{\sigma}_{(k)}^2(z)}}\exp\left(-\frac{1}{2}\left\Vert\frac{x-\tilde{\mu}(z)}{\tilde{\sigma}(z)}\right\Vert^2\right)\tag{20}$$
这里的$\tilde{\mu}(z),\tilde{\sigma}^2(z)$是输入为$z$、输出分别为均值和方差的神经网络,$\tilde{\mu}(z)$就起到了decoder的作用。于是
$$-\ln q(x|z) = \frac{1}{2}\left\Vert\frac{x-\tilde{\mu}(z)}{\tilde{\sigma}(z)}\right\Vert^2 + \frac{D}{2}\ln 2\pi + \frac{1}{2}\sum_{k=1}^D \ln \tilde{\sigma}_{(k)}^2(z)\tag{21}$$
很多时候我们会固定方差为一个常数$\tilde{\sigma}^2$,这时候
$$-\ln q(x|z) \sim \frac{1}{2\tilde{\sigma}^2}\Big\Vert x-\tilde{\mu}(z)\Big\Vert^2\tag{22}$$
这就出现了MSE损失函数。
所以现在就清楚了,对于二值数据,我们可以对decoder用sigmoid函数激活,然后用交叉熵作为损失函数,这对应于$q(x|z)$为伯努利分布;而对于一般数据,我们用MSE作为损失函数,这对应于$q(x|z)$为固定方差的正态分布。
采样计算技巧 #
前一节做了那么多的事情,无非是希望能$(13)$式明确地写下来。当我们假设$p(z|x)$和$q(z)$都是正态分布时,$(13)$式的KL散度部分就已经算出来了,结果是$(16)$式;当我们假设$q(x|z)$是伯努利分布或者高斯分布时,$-\ln q(x|z)$也能算出来了。现在缺什么呢?
采样!
$p(z|x)$的作用分两部分,一部分是用来算$KL\Big(p(z|x)\Big\Vert q(z)\Big)$,另一部分是用来算$\mathbb{E}_{z\sim p(z|x)}\big[-\ln q(x|z)\big]$的,而$\mathbb{E}_{z\sim p(z|x)}\big[-\ln q(x|z)\big]$就意味着
$$-\frac{1}{n}\sum_{i=1}^n \ln q(x|z_i),\quad z_i \sim p(z|x)\tag{23}$$
我们已经假定了$p(z|x)$是正态分布,均值和方差由模型来算,这样一来,借助“重参数技巧”就可以完成采样。
但是采样多少个才适合呢?VAE非常直接了当:一个!所以这时候$(13)$式就变得非常简单了:
$$\mathcal{L} = \mathbb{E}_{x\sim \tilde{p}(x)} \Bigg[-\ln q(x|z) + KL\Big(p(z|x)\Big\Vert q(z)\Big)\Bigg],\quad z\sim p(z|x)\tag{24}$$
该式中的每一项,可以在把$(16),(19),(21),(22)$式找到。注意对于一个batch中的每个$x$,都需要从$p(z|x)$采样一个“专属”于$x$的$z$出来才去算$-\ln q(x|z)$。而正因为VAE在$p(z|x)$这里只采样了一个样本,所以它看起来就跟普通的AE差不多了。
那么最后的问题就是采样一个究竟够了吗?事实上我们会运行多个epoch,每次的隐变量都是随机生成的,因此当epoch数足够多时,事实上是可以保证采样的充分性的。我也实验过采样多个的情形,感觉生成的样本并没有明显变化。
致敬 #
这篇文章从贝叶斯理论的角度出发,对VAE的整体流程做了一个梳理。用这种角度考察的时候,我们心里需要紧抓住两个点:“分布”和“采样”——写出分布形式,并且通过采样来简化过程。
简单来说,由于直接描述复杂分布是难以做到的,所以我们通过引入隐变量来将它变成条件分布的叠加。而这时候我们对隐变量的分布和条件分布都可以做适当的简化(比如都假设为正态分布),并且在条件分布的参数可以跟深度学习模型结合起来(用深度学习来算隐变量的参数),至此,“深度概率图模型”就可见一斑了。
让我们一起致敬贝叶斯大神,以及众多研究概率图模型的大牛,他们都是真正的勇者。
转载到请包括本文地址:https://spaces.ac.cn/archives/5343
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Mar. 28, 2018). 《变分自编码器(二):从贝叶斯观点出发 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/5343
@online{kexuefm-5343,
title={变分自编码器(二):从贝叶斯观点出发},
author={苏剑林},
year={2018},
month={Mar},
url={\url{https://spaces.ac.cn/archives/5343}},
}
May 9th, 2020
苏老师公式9,好像简化的时候多打了个p(x)
没打多呀,你说的是哪里?
May 12th, 2020
苏神,想问下。如果我们最终想要的结果是让p(z)是标准正态分布,为什么不一开始就让z从标准正态分布中采样呢?为什么非要绕一大圈让p(z|x)去和标准正态分布看齐来达到这一目标呢?而且你在VAE中说我们不能让p(z)是标准正太分布,因为没办法知道Zk是否和Xk是对应的?这不是有点矛盾吗?
你在VAE第一篇中的图4是让每一个x的p(z|x)都向标准正太分布看齐,这个你VAE第一篇中的图2的结果(所有x都向一个标准正太分布看齐)有什么区别吗?
希望大神能帮忙小白解答下!
不要一上来就抛出一堆“为什么不xxxx呢”的问题,自己好好想想“xxxx之后呢”这个问题。
比如“一开始就让z从标准正态分布中采样”,然后呢?可以把整个模型构思完整吗?
多谢,我等您回复的这段时间想明白点了。但是还想问您一个问题,就是p(z)和q(z)的关系是什么呢?我看了您的讲解感觉还是不理解他俩有啥区别?
在本博客的VAE系列里,$p(z)$指的是真实的隐变量分布,而$q(z)$是我们希望的隐变量分布,即$p(z)\triangleq \int \tilde{p}(x) p(z|x)dx$,而我们希望$p(z)\to q(z)$。
这下明白了,多谢苏神!
June 16th, 2020
苏神,感觉已经把文章中的P(x),q(x),P(z|x),P(x|z),q(x|z),q(z|x)搞混了,能统一解释一下吗,感觉大家也很昏这些概念
昏的话就反复看,看到不昏为止。另外一般符号首次出现时都会有含义说明的。
June 24th, 2020
你好!非常感谢你的辛苦工作!
关于你的推导,有个问题:
式(13)中,求期望时,有$z\sim p(z|x)$,但这时$p$是未知的。实际上的采样是$z\sim q(z|x)$。而且,原始的VAE论文的loss中KL项为$KL(q(z|x)\|p(z))$,而本文中的则变为了$KL(p(z|x)\|q(z))$。
所以1)将VAE看成是最小化$KL(p(x,z)\|q(x,z))$是正确的吗?2)可以使用VAE的loss反推出$\arg\min_\theta KL(p(x,z)\|q_\theta(x,z))$吗?
希望不吝赐教!
既然决定看本文,请先忘记其他地方的记号。
简单来说,本文的$p(z|x)$事实上就相当于其他地方的$q(z|x)$。在本文的框架里,不存在其他方式计算出来的、或者是什么上帝视角的$p(z|x)$,反之$p(z|x)$定义出来的。也就是说,我们已经有了数据分布$\tilde{p}(x)$,但我们从来就没有$z$(也没有$q(z),q(x|z)$),而现在我们随便定义一个$p(z|x)$(带参数的高斯分布、伯努利分布等),那么就有了联合分布$p(x,z)=\tilde{p}(x)p(z|x)$。
后面则是再定义$q(z),q(x|z)$,然后试图用$q(z)q(x|z)$去逼近$p(x,z)$。当然,由于$p(x,z)$也带有参数,所以$p(x,z)$也会主动逼近$q(z)q(x|z)$。但是这个先后顺序是确定的:先有$\tilde{p}(x)$、再有$p(z|x)$、然后才有$q(z),q(x|z)$。
July 14th, 2020
苏神,您好。反复阅读您写的VAE收益颇深,这里有两个问题想请教。
1. VAE在encoder过程是特征提取过程,然后在隐层时将其强制拟合成正态分布。那么这个过程会不会影响到原本特征的本质空间的结构?
2.如何理解VAE中encoder的解耦?
1、何为“原本特征的本质空间”?如何证明正态分布就不是它的“本质空间”?
2、一般情况下,VAE假设后验分布为“各分量独立”的正态分布,各分量独立即说明解耦。
老师,这里说的本质空间是对于高维稀疏数据,这样的数据本质是来源于低维空间,这里的低维空间就是它的本质空间。没有是理论上证明它不是。
还是没明白你的意思,你是说“原来很相似的两张图片,在编码空间里边可能变得不相似了”的意思吗?
July 26th, 2020
写得真的还是挺不错的!
问下式20和式15里面高斯里面,方差应该是个向量值吧,代表每个多元拟合得到的方差,那里面就变成向量除向量的范数了,这是不是有点问题。当然这不影响下面的式子,因为拆成多元的加和形式就是下面的表达式。
另外感觉这个文章的亮点是从联合分布的KL散度出发得到最后的目标函数;在An Introduction to Variational Autoencoders原作者写的里面,他其实是从ELBO出发的(ELBO也是EM算法的出发点),导出最后的目标函数,建议做个对比,都蛮精彩的!
再次感谢分享!
谢谢。这里的两个向量相除,默认就是逐位相除,即$\frac{[a,b]}{[c,d]}=\left[\frac{a}{c},\frac{b}{d}\right]$。
这里的亮点确实是联合分布的KL散度,这是一个相当统一的视角,从中可以简化很多内容的推导,包括一些变分自编码器的更复杂变体,比如 https://kexue.fm/archives/5887 这里的聚类推广。
July 29th, 2020
苏老师您好!我有一个疑问:您文中写到当q(x|z)服从固定方差的正态分布,重构误差部分采用均方误差。(22)式的结果只得出-lnq(x|z)刚好与均方误差相似,但是模型总误差的第一部分Ez∼p(z|x)[−lnq(x|z)]中还有期望没有计算。期望部分的计算没有影响吗?为什么?是因为此时的生成模型中z已知,求期望就是其本身吗?
你说的期望部分就包含在重参数之中了,由于只采样了一个样本,所以形式与mse一样。关于重参数还有疑问的话,不妨看看第三篇:https://kexue.fm/archives/5383
January 9th, 2021
多谢启发性的文章, 这里有一个问题:
VAE 的损失原文中似乎是对逼近的后验(编码器) $q(z|x)$ 求期望, 而本文中是对真正产生模型的后验 $p(z|x)$ 求期望
见原文公式 (2,3) 对比本文公式 (13) -- 形式一致但是求期望的分布不一样.
你要看完全文,理解本文的各个符号的含义,不要看了个片段就强行对应到别的地方的记号。
本文的$p(z|x)$,实际上就是你说的别的地方的$q(z|x)$,本文用的是一套略有不同、但是在笔者的整个VAE系列中是一致的、更易于描述和推广的记号;而且笔者关于VAE的推导也是自创的,是直接使用联合分布的KL散度就可以得出,而不需要一个天然存在的后验分布(即别的地方的$p(z|x)$)。
January 20th, 2021
你好,我想问一下d维的(各分量独立的)正态分布在实现采样的时候,是做一次N(0,1)采样,再通过对应维度的均值方差计算,还是每一维都做一次N(0,1)的采样来计算呢?
想通了不好意思
每一维都是独立进行采样的。
March 2nd, 2021
定义p(x,z)=p̃(x)p(z|x),我们设想用一个联合概率分布q(x,z)来逼近p(x,z)
-------------------------------
我理解是想用带参数的q(x,z),去逼近的p(x,z)是真实的分布;
而p(z|x)在文章中的含义是模型要去学习的一个带参数的分布。
那么为什么真实分布p(x,z)可以被分解为p̃(x)p(z|x)?
一个是真实样本的不完全抽样下的经验分布,一个是模型学出来的有偏分布,这一步是否正确?
同问+1
并不是一定要用一个有参数的东西去逼近无参数的东西才可行,两个东西都有参数,也可以相互逼近求解。