4 Feb

[问题解答]双曲线上的最短距离

昨天晚上一位网友与我讨论以下问题:

函数$y=\sqrt{3} x-\frac{1}{x}$的图像为双曲线,在此双曲线的两支上分别取P、Q点,求PQ的最短距离。

显然,如果双曲线是普通的$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的形式,则这个问题是相当简单的。就是当y=0时两个点的距离,也就是2a。但是很明显这样的一条双曲线是经过旋转的。因此我们需要知道它究竟旋转了多少度$\theta$。然后列出$y=(\tan\theta) x$,联立双曲线方程就可以求出两个点了。

点击阅读全文...

2 Feb

网友:椭圆定长弦中点轨迹的一种解法

大概在半年前,我曾用“化圆法”解决了椭圆内定长弦中点轨迹问题,求出了轨迹方程。前几天,我收到了网名为“理想”的网友的Email,他提出了自己对这个问题的解法,并得到了形式不同的轨迹方程,因此对两者的等价性表示疑惑。经过检验,我跟他的轨迹方程基本上是等价的,不过,他求出的轨迹方程总包括了原点,这是一点不足之处。但是看起来,他的轨迹方程却感觉好看一些。这的确很让人意外,因为从他的化简过程来看,有种“化简为繁”的味道,却得出了相当简洁的答案,着实有趣。

经过网友的同意,将他的过程贴在这里与大家分享!后面附有pdf文档,欢迎下载阅读。希望在科学空间可以看到更多的读者留下的痕迹。

椭圆定长弦中点轨迹的一种解法

作者:理想

本文介绍了一种计算椭圆定长弦中点轨迹的方法。设椭圆长、短轴分别为$2a$、$2b$,弦长为$2r$,随着弦的两端在椭圆上滑动,弦的中点形成的轨迹为:
$$(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1)(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{r^2}{a^2b^2}) + \frac{r^2}{a^2b^2} = 0$$
它不是一个椭圆,而是一个高次曲线。

点击阅读全文...

20 Jan

评论功能修复了

一直都挺奇怪为什么这些天Blog都没有人来评论,难道我的文章质量下降了?可是统计显示访问人数比以往有所增加呀。一直郁闷但却无从找到答案。

今天收到了4anpan读者的邮件,表示评论解锁功能失效了。我自己测试才发现真的如此!!原来不一定是没有人来评论,而是评论插件出了问题。经排除,是最新的公式插件(ASCIIMathMLwFallback2)与滑动解锁的评论插件(IQapTcha)有冲突。所以只好把评论插件换回旧的验证码插件了。正在构思新一步的插件方案。

万分感谢4anpan读者的反馈,希望有更多的读者来帮忙完善科学空间。这里有你更精彩!!

期待你的声音^_^