万能的seq2seq:基于seq2seq的阅读理解问答
By 苏剑林 | 2019-12-05 | 80494位读者 | 引用今天给bert4keras新增加了一个例子:阅读理解式问答(task_reading_comprehension_by_seq2seq.py),语料跟之前一样,都是用WebQA和SogouQA,最终的得分在0.77左右(单模型,没精调)。
方法简述
由于这次主要目的是给bert4keras增加demo,因此效率就不是主要关心的目标了。这次的目标主要是通用性和易用性,所以用了最万能的方案——seq2seq来实现做阅读理解。
用seq2seq做的话,基本不用怎么关心模型设计,只要把篇章和问题拼接起来,然后预测答案就行了。此外,seq2seq的方案还自然地包括了判断篇章有无答案的方法,以及自然地导出一种多篇章投票的思路。总而言之,不考虑效率的话,seq2seq做阅读理解是一种相当优雅的方案。
这次实现seq2seq还是用UNILM的方案,如果还不了解的读者,可以先阅读《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》了解相应内容。
从语言模型到Seq2Seq:Transformer如戏,全靠Mask
By 苏剑林 | 2019-09-18 | 302266位读者 | 引用相信近一年来(尤其是近半年来),大家都能很频繁地看到各种Transformer相关工作(比如Bert、GPT、XLNet等等)的报导,连同各种基础评测任务的评测指标不断被刷新。同时,也有很多相关的博客、专栏等对这些模型做科普和解读。
俗话说,“外行看热闹,内行看门道”,我们不仅要在“是什么”这个层面去理解这些工作,我们还需要思考“为什么”。这个“为什么”不仅仅是“为什么要这样做”,还包括“为什么可以这样做”。比如,在谈到XLNet的乱序语言模型时,我们或许已经从诸多介绍中明白了乱序语言模型的好处,那不妨更进一步思考一下:
为什么Transformer可以实现乱序语言模型?是怎么实现的?RNN可以实现吗?
本文从对Attention矩阵进行Mask的角度,来分析为什么众多Transformer模型可以玩得如此“出彩”的基本原因,正如标题所述“Transformer如戏,全靠Mask”,这是各种花式Transformer模型的重要“门道”之一。
读完本文,你或许可以了解到:
1、Attention矩阵的Mask方式与各种预训练方案的关系;
2、直接利用预训练的Bert模型来做Seq2Seq任务。
seq2seq之双向解码
By 苏剑林 | 2019-08-09 | 43440位读者 | 引用在文章《玩转Keras之seq2seq自动生成标题》中我们已经基本探讨过seq2seq,并且给出了参考的Keras实现。
本文则将这个seq2seq再往前推一步,引入双向的解码机制,它在一定程度上能提高生成文本的质量(尤其是生成较长文本时)。本文所介绍的双向解码机制参考自《Synchronous Bidirectional Neural Machine Translation》,最后笔者也是用Keras实现的。
背景介绍
研究过seq2seq的读者都知道,常见的seq2seq的解码过程是从左往右逐字(词)生成的,即根据encoder的结果先生成第一个字;然后根据encoder的结果以及已经生成的第一个字,来去生成第二个字;再根据encoder的结果和前两个字,来生成第三个词;依此类推。总的来说,就是在建模如下概率分解
\begin{equation}p(Y|X)=p(y_1|X)p(y_2|X,y_1)p(y_3|X,y_1,y_2)\cdots\label{eq:p}\end{equation}
基于CNN和序列标注的对联机器人
By 苏剑林 | 2019-01-14 | 41027位读者 | 引用缘起
前几天在量子位公众号上看到了《这个脑洞清奇的对联AI,大家都玩疯了》一文,觉得挺有意思,难得的是作者还整理并公开了数据集,所以决定自己尝试一下。
动手
“对对联”,我们可以看成是一个句子生成任务,可以用seq2seq完成,跟笔者之前写的《玩转Keras之seq2seq自动生成标题》一样,稍微修改一下输入即可。上面提到的文章所用的方法也是seq2seq,可见这算是标准做法了。
玩转Keras之seq2seq自动生成标题
By 苏剑林 | 2018-09-01 | 343981位读者 | 引用话说自称搞了这么久的NLP,我都还没有真正跑过NLP与深度学习结合的经典之作——seq2seq。这两天兴致来了,决定学习并实践一番seq2seq,当然最后少不了Keras实现了。
seq2seq可以做的事情非常多,我这挑选的是比较简单的根据文章内容生成标题(中文),也可以理解为自动摘要的一种。选择这个任务主要是因为“文章-标题”这样的语料对比较好找,能快速实验一下。
seq2seq简介
所谓seq2seq,就是指一般的序列到序列的转换任务,比如机器翻译、自动文摘等等,这种任务的特点是输入序列和输出序列是不对齐的,如果对齐的话,那么我们称之为序列标注,这就比seq2seq简单很多了。所以尽管序列标注任务也可以理解为序列到序列的转换,但我们在谈到seq2seq时,一般不包含序列标注。
要自己实现seq2seq,关键是搞懂seq2seq的原理和架构,一旦弄清楚了,其实不管哪个框架实现起来都不复杂。早期有一个第三方实现的Keras的seq2seq库,现在作者也已经放弃更新了,也许就是觉得这么简单的事情没必要再建一个库了吧。可以参考的资料还有去年Keras官方博客中写的《A ten-minute introduction to sequence-to-sequence learning in Keras》。
基于CNN和VAE的作诗机器人:随机成诗
By 苏剑林 | 2018-03-24 | 116787位读者 | 引用前几日写了一篇VAE的通俗解读,也得到了一些读者的认可。然而,你是否厌倦了每次介绍都只有一个MNIST级别的demo?不要急,这就给大家带来一个更经典的VAE玩具:机器人作诗。
为什么说“更经典”呢?前一篇文章我们说过用VAE生成的图像相比GAN生成的图像会偏模糊,也就是在图像这一“仗”上,VAE是劣势。然而,在文本生成这一块上,VAE却漂亮地胜出了。这是因为GAN希望把判别器(度量)也直接训练出来,然而对于文本来说,这个度量很可能是离散的、不可导的,因此纯GAN就很难训练了。而VAE中没有这个步骤,它是通过重构输入来完成的,这个重构过程对于图像还是文本都可以进行。所以,文本生成这件事情,对于VAE来说它就跟图像生成一样,都是一个基本的、直接的应用;对于(目前的)GAN来说,却是艰难的象征,是它挥之不去的“心病”。
嗯,古有曹植七步作诗,今有VAE随机成诗,让我们开始吧~
模型
对于很多人来说,诗是一个很美妙的玩意,美妙之处在于大多数人都不真正懂得诗,但大家对诗的模样又有一知半解的认识。因此,只要生成的“诗”稍微像模像样一点,我们通常都会认为机器人可以作诗了。因此,所谓作诗机器人,是一个纯粹的玩具了,能作几句诗,也不意味着普通语言的生成能力有多好,也不意味着我们对NLP的理解有多深。
CNN + VAE
就本文的玩具而言,其实是一个比较简单的模型,主要是把一维CNN和VAE结合了起来。因为生成的诗长度是固定的,所以不管是encoder还是decoder,我都只是用了纯CNN来做。模型的结构图大概是:
最近评论