你所没有思考过的平行线问题
By 苏剑林 | 2015-03-17 | 35793位读者 | 引用本文的主题是平行线,了解数学的朋友可能会想我会写有关非欧几何的内容。但这次不是,本文的内容纯粹是我们从小就开始学习的欧氏几何,基于“欧几里得第五公设”(又称平行公设)。但即便是从小就学习的欧氏几何中的平行线,也许里边的很多问题我们都没有思考清楚。因为平行是几何中非常基本的情形,因此,在讨论这种基本命题的时候,相当容易会出现循环论证、甚至本末倒置的情况。
我们从初中开始就被灌输“同位角相等,两直线平行”、“内错角相等,两直线平行”之类的平行线判断法则,当然,还少不了的是“过直线外一点只能作一条直线与已知直线平行”。但是,这些内容之中,有多少是基本的公理,有多少是可以证明的,该如何证明,我想很多人都理解不清楚,我自己也没有一个很好的答案。那些在初中教授平行线的老师们,估计也没多少个能够把它说清楚的。后来我发现,我居然不会证明“同位角相等,两直线平行”,“欧几里得第五公设”好像并没有告诉我们这个判定法则呀。于是,我翻看了一下初中的数学教科书,发现原来当初“同位角相等,两直线平行”这一判定法则是不加证明地让我们接受的,无怪乎我怎么也想不到关于这一法则的简单的证明...
于是,我想写这篇文章,为大家理解平行线的整个逻辑提供一点参考。
关于“平衡态公理”的更正与思考
By 苏剑林 | 2013-02-03 | 20395位读者 | 引用在《自然极值》系列文章中,我引用了《数学方法论与解题研究》(张雄,李得虎编著)中提到的“平衡态公理”,并用它来解决了一些数学物理问题。平衡态公理讲的是系统的平衡状态总是在势能取极(小)值时取到,简单来讲就是自然界总向势能更低的方向发展,比如“水往低处流”。这在经典力学中本身是没有任何问题的,但在有些时候,我们在应用的时候可能会不自觉地将它想象成为“系统的平衡状态总是在总能量取极(小)值时取到”。然而,这却是不正确的。本文就是要探讨这个问题。
先来看看平衡态公理的来源。从最小作用量原理出发,考虑保守系统,每一个系统都应该对应着一个取极值的作用量S:
$$S=\int_{t_1}^{t_2} L(x,\dot{x})dt$$
地球引力场的悬链线方程
By 苏剑林 | 2011-05-15 | 62459位读者 | 引用之前曾在《自然极值》系列文章中提到过均匀重力场下的悬链线形状问题,并且在那文章中向读者提出:在一个质点(地球)引力场中的悬链线形状会是怎么样的。说实话,提出这个问题的时候,我还不懂怎么解答这个问题,不过现在会了,回头一看,已经几个月了,时间过得真快...
与之前的思路一样,我们依旧采用的是“平衡态公理”,即总势能最小。从天体力学中我们知道,任意两个质点间的势能为$-\frac{Gm_1 m_2}{r}$。对于本题的悬链线问题,我们可以把地球放到坐标原点位置,而悬链的两个固定点分别为$(x_1,y_1)$和$(x_2,y_2)$,链的总长度为l。即
$$\int_{x_1}^{x_2} \sqrt{dx^2+dy^2}=l$$
最近评论