趣题:与橡皮绳赛跑的蚂蚁
By 苏剑林 | 2014-04-09 | 31100位读者 | 引用从费马大定理谈起(一):背景简介
By 苏剑林 | 2014-08-15 | 27090位读者 | 引用费马大定理,也叫做费马最后定理(Fermat Last Theorem),说的是
设$n$是大于2的正整数,则不定方程$x^n+y^n=z^n$没有全不为0的整数解。
稍微阅读过数学史的朋友应该知道,该定理首先于1637年由法国业余数学家费马(Pierre de Fermat)在阅读丢番图《算术》拉丁文译本时写在第11卷第8命题旁写道。他并附加道:“我发现了一个非常漂亮的证明,但这里没有足够的空间可容纳得下。”根据后世的考证,费马或许有办法证明n=3,4,5的情形,但不大可能给出一般性的证明,因为在20世纪90年代,怀尔斯用了130页的纸张,而且用到了复杂的现代理论,才完全证明了费马大定理。所以费马当时的这一断言,更可能只是一个归纳猜测。
[备份]全国大学生数学建模竞赛论文LaTex模板
By 苏剑林 | 2014-09-11 | 39789位读者 | 引用实数域上有限维可除代数只有四种
By 苏剑林 | 2014-11-12 | 64818位读者 | 引用今天上近世代数课,老师谈到除环,举了一个非交换的除环的粒子,也就是四元数环,然后谈到“实数域上有限维可除代数只有4种”,也就是实数本身、复数、四元数和八元数(这里的可除代数就是除环)。这句话我听起来有点熟悉,又好像不大对劲。我记得在某本书上看过,定义为实数上的超复数系,如果满足模的积性,那么就只有以上四种。但是老师的那句话表明即使去掉模的积性,也只有四种。我自然以为老师记错了,跟老师辩论了一翻,然后回到宿舍又找资料,最终确定:实数域上有限维可除代数真的只有四种!下面简单谈谈我对这个问题的认识。
当然,这里不可能给出这个命题的证明,因为这个证明相当不简单,笔者目前也没有弄懂,但是粗略感觉一下为什么,还是有可能的。看到这个命题,我们一下子的感觉可能是:怎么会这么少!我们这里通过例子简单说明一下,确实不会多!
我们已经对复数系很熟悉了,也就是定义在实数上的向量空间,基为$\{1,i\}$,并且给定乘法为
$$1\times i=i \times 1=i,\quad 1^2=1,\quad i^2=-1$$
这学期的数学建模课,对笔者来说,基本上就是一个锻炼论文写作和Python技能的过程。不过是写论文还是写博客,我都致力于写出符合自己审美观的作品,因此我才会选择$\LaTeX$,我才会选择Python。$\LaTeX$写出来的科学论文是公认的标准而好看的格式,而Python,的确可以作出漂亮的图,也可以简洁地完成所需要的数值计算。我越来越发现,在数学建模、写作方面,除了必不可少的符号推导部分(这部分只能用Mathematica),我已经离不开Python了。
为什么还要求漂亮?内容好不就行了吗?的确,内容才是主要的,但是如果能把展示效果美化一下,而且又不耗费更多的功夫,那么何乐而不为呢?
勒贝格(Lebesgue)控制收敛定理
By 苏剑林 | 2015-01-16 | 83849位读者 | 引用实变函数中有一个勒贝格控制收敛定理,一般认为它是判断积分和取极限可交换的很好用的方法。勒贝格控制收敛定理是说,如果定义在集合$E$上的函数列$\left\{f_n(x)\right\}$满足$|f_n(x)|\leq F(x)$,而$F(x)$在$E$上可积,那么积分和取极限就可以交换,即
$$\lim_{n\to\infty}\left(\int_E f_n (x)dx\right)=\int_E \left(\lim_{n\to\infty}f_n (x)\right)dx$$
本文不打算谈该定理的证明,只是谈谈该定理的应用相关的话题。首先,请有兴趣的读者,做做以下题目:
$$\lim_{n\to\infty}\left(\int_0^1 \frac{n^2 x}{1+n^4 x^4}dx\right)$$
有趣的求极限题:随心所欲的放缩
By 苏剑林 | 2015-03-28 | 44576位读者 | 引用昨天一好友问我以下题目,求证:
$$\lim_{n\to\infty} \frac{1^n + 2^n +\dots + n^n}{n^n}=\frac{e}{e-1}$$
将解答过程简单记录一下。
求解
首先可以注意到,当$n$充分大时,
$$\frac{1^n + 2^n +\dots + n^n}{n^n}=\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n$$
的主要项都集中在最后面那几项,因此,可以把它倒过来计算
$$\begin{aligned}\frac{1^n + 2^n +\dots + n^n}{n^n}=&\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n\\
=&\left(\frac{n}{n}\right)^n+\dots+\left(\frac{2}{n}\right)^n+\left(\frac{1}{n}\right)^n\end{aligned}$$
最近评论