有质动力:倒立单摆的稳定性
By 苏剑林 | 2013-12-29 | 49441位读者 | 引用不确定性原理的矩阵形式
By 苏剑林 | 2014-01-05 | 41189位读者 | 引用作为量子理论的一个重要定理,不确定性原理总是伴随着物理意义出现的,但是从数学的角度来讲,把不确定性原理的数学形式抽象出来,有助于我们发现更多领域的“不确定性原理”。
本文中,我们将谈及不确定性原理的n维矩阵形式。首先需要解释给大家的是,不确定性原理其实是关于“两个厄密算符与一个单位向量之间的一条不等式”。在量子力学中,厄密算符对应着无穷维的厄密矩阵;而所谓厄密矩阵,就是一个矩阵同时取共轭和转置之后,等于它自身。但是本文讨论一个更简单的情况,那就是n维实矩阵,n维实矩阵中的厄密矩阵就是我们所说的实对称矩阵了。
设$\boldsymbol{x}$是一个$n$维单位向量,即$|\boldsymbol{x}|=1$,而$\boldsymbol{A}$和$\boldsymbol{B}$是n阶实对称矩阵。在量子力学中,$\boldsymbol{x}$就是波函数,但是在这里,它只不过是一个单位实向量;并记$\boldsymbol{I}$是$n$阶单位阵。
考虑
$$\bar{A}=\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x},\bar{B}=\boldsymbol{x}^{T}\boldsymbol{B}\boldsymbol{x}$$
从这些记号可以看出,这些量对应着可观测量的期望值。当然,如果不懂量子力学,可以只看上面的矩阵形式。
一维弹簧的运动(上)
By 苏剑林 | 2014-03-11 | 28413位读者 | 引用平面曲线的曲率的复数表示
By 苏剑林 | 2014-03-04 | 29327位读者 | 引用开学已经是第二周了,我的《微分几何》也上课两周了,进度比较慢,现在才讲到平面曲线的曲率。在平面曲线$\boldsymbol{t}(t)=(x(t),y(t))$某点上可以找出单位切向量。
$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$
其中$ds^2 =dx^2+dy^2$,将这个向量逆时针旋转90度之后,就可以定义相应的单位法向量$\boldsymbol{n}$,即$\boldsymbol{t}\cdot\boldsymbol{n}=0$。
常规写法
让我们用弧长$s$作为参数来描述曲线方程,$\boldsymbol{t}(s)=(x(s),y(s))$,函数上的一点表示对$s$求导。那么我们来考虑$\dot{\boldsymbol{t}}$,由于$\boldsymbol{t}^2=1$,对s求导得到
$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$
一维弹簧的运动(下)
By 苏剑林 | 2014-03-13 | 26647位读者 | 引用在上一篇文章中,我们得到了一维弹簧运动的方程
$$m\frac{\partial^2 X}{\partial t^2}=k\frac{\partial^2 X}{\partial \xi^2}$$
并且得到了通解
$$X=F(u)+H(v)=F(\xi+\beta t)+H(\xi-\beta t)$$
或者
$$X(\xi,t)=\frac{1}{2}\left[X_0(\xi+\beta t)+X_0(\xi-\beta t)\right]+\frac{1}{2\beta}\int_{\xi-\beta t}^{\xi+\beta t} X_1 (s)ds$$
在文章的末尾,提到过这个解是有些问题的。现在让我们来详细分析它。
今天是2014年2月14日,农历正月十五,传统的元宵佳节,祝大家元宵节快乐!
不过虽说是元宵佳节,但是我们这里的习俗却没有闹元宵的,好像在我们这里元宵节就像普通的初一十五一样,惯例地上个香,祭下神而已,唯一特别的地方就是早上妈妈放了个鞭炮,什么汤圆、灯笼、灯谜都没有呢。不过这并不妨碍我欣赏元宵节,印象里好像上学以来这是第一次在家过元宵节。幸好没有参加美国数学建模,不然又少了半个月的假期,少了一次难得的元宵,而多了得不偿失的劳动...
今天也是西方的情人节,但在这里我只强调元宵节。首要原因却不是我目前单身(当然这也是原因之一^_^),而是元宵节是中国传统节日。我这个人有个奇怪的“嗜好”,反正越潮流的东西我越不跟。于是乎,既然那么多人都庆祝着西方节日(什么万圣节、圣诞节、情人节),那么我就偏不凑这个热闹。我又想起了去年圣诞前夕有个师弟过来向我们宣传和推销圣诞的东西,被我批了一顿,我直言说“你为什么不等元旦再来?”。我想,如果哪一天,我也有机会庆祝情人节,我也只是庆祝中国的情人节,总感觉中国的情人节美多了:七夕,Qixi Festival,多美!不论是典故还是习俗都更美~
Project Euler 454 :五天攻下“擂台”
By 苏剑林 | 2014-06-27 | 28490位读者 | 引用进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目:
设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。
这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~
上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。
在学车的时候,我堂大哥曾问我一道作圆的问题:
平面上给出三个两两相切的圆以及它们的圆心,求作一个圆与这三个圆都相切(尺规作图)。
如果从纯几何的途径入手,我们甚至很难判断这样的圆是否存在。但是我之前似乎已经看过类似的题目,于是很快想到一个名词:反演。反演可以将圆反演成直线(圆过反演点),也可以将圆反演成圆(圆不过反演点),而其他的相切、相交等关系保持不变。对反演后的图形进行相同的反演,就变回原来的图形。本题的难点在于圆太多,利用反演,我们可以将它变为两条直线和一个圆的问题。
假设读者已经有了反演的基本知识,如果没有,请到
http://zh.wikipedia.org/wiki/反演
阅读相关内容。
最近评论