[SETI-50周年]送给外星人的礼物
By 苏剑林 | 2011-02-06 | 36074位读者 | 引用转载自2011年1月的《天文爱好者》 作者:钟晚晴
生命出现是天体演化的必然结果
15世纪时,欧洲的文艺复兴运动引起了人们宇宙观的大革命。哥白尼学说的主要传播者之一,意大利思想家布魯诺毫不含糊地宣扬日心说并且提及“外星人”是否存在问题,他这样写到:“宇宙中存在着无数的太阳,存在着无数绕自己太阳运转的地球,就像我们的七个行星绕着我们的太陌运转似的……。在这些世界上居住着各种生物。”科学大师伽利略率先把望远镜指向星空,继而几百年以来有了一系列天文发现。太空视野的大幵阔常引发人类这样的追问:除了地球之外,茫茫宇宙中还存在别的文明星球吗?如果存在,能否找到人类的知音一智慧生命?
科学家通过研究地球化石发现,早在35亿年前地球上就已有了一种发育得比较高级的单细胞生物,即蓝藻类;根据恒星演化理论以及对地球上古老岩石和陨星物质分析知道,太阳和地球的形成比这种生物的出现至少还要早约十几亿年左右。太阳系自原始星云形成后大约经过50亿年地球上才有人类。此外,科学考察表明,在最近五亿年来(根据化石考查)已经有过五次生命大灭绝,人类是五亿年来最后一次灭绝以后从猿进化而来。天体的环境变化往往决定着许许多多生命的命运,例如6500万年前恐龙的绝灭,据说就是遭遇了寒冷的冰期或地球被一颗直径十几千米的小天体撞击的结果。
从20世纪初以来,天文学的研究成果是显著的,例如关于银河系的许多发现,河外星系及宇宙膨胀的发现,特别是后来发现类星体、星际分子、脉冲星、河外星系超新星爆发等等。在进入空间科学和电子计算机科学时代以来,人们对宇宙天体的研究更加深入,每年都有许多新的天体被发现、探究。
《方程与宇宙》:限制性三体的那些事儿(八)
By 苏剑林 | 2011-02-04 | 27701位读者 | 引用在上一些关于限制性三体问题的探讨中,我们得出了在平面上的方程:
$$\ddot{R}+2i\omega \dot{R}=\omega^2 R-GM\frac{R-l_1}{|R-l_1|^3}-Gm\frac{R-l_2}{|R-l_2|^3}\tag{32}$$
能量积分为:
$$\frac{1}{2}|\dot{R}|^2=\frac{1}{2} \omega^2 |R|^2+\frac{GM}{|R-l_1|}+\frac{Gm}{|R-l_2|}-C\tag{33}$$
下面就以这两个方程为基础,再说说限制性三体问题的那些事儿...
施密特系统的校正镜方程求解
By 苏剑林 | 2011-02-11 | 33039位读者 | 引用非抛物面望远镜的校正镜方程求解
The Corrector Plate of Non-parabola Telescope
本文在牧夫天文论坛的讨论:
http://www.astronomy.ac/bbs/thread-160257-1-1.html
为了克服折射望远镜的色差问题,1670年,牛顿制造了第一台实用的反射式望远镜,将望远镜的主镜由玻璃透镜换成了抛物反射面,从而消除了色差。然而,相比球面镜,大口径的抛物面并不容易磨制。因为制作大球面镜只需要将曲率相等的小镜片相对自由组合在一起就行了,而抛物线每点的曲率并不相等,所以需要逐个磨制曲率不等的小镜片,并按照严格的顺序组合起来。这无疑大大增加了磨制难度。
为了解决这一难题,天文学家们想到了一个折衷的办法:以球面为主镜,并配以校正镜来校正球差。迎着这一思路,施密特望远镜随之而生。而当代的大望远镜基本上都是沿用这一思路。然而,校正镜是一个比抛物面更加复杂的四次曲面,磨制工艺要求更高,因此,校正镜也不宜过大。
科学空间:2011年6月重要天象
By 苏剑林 | 2011-05-28 | 27334位读者 | 引用《方程与宇宙》:一种有趣的三体问题坐标
By 苏剑林 | 2011-02-19 | 23705位读者 | 引用通常来说,选取惯性系为参考系,列出的三体问题方程为
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}$$
历史上出现过很多不同形式的变换,使得三体问题的运动方程有了各样的形式,如Lagrange形式、Jacobi形式、Hamilton形式等。这些变换形式都各有特点,都能够在一定程度上化简三体问题。BoJone在研究摆弄等质量型三体问题的运动方程时,也发现了一种很有趣的变换,在此贴出与大家分享。
设$\vec{R}_1=\vec{r}_1-\vec{r}_2,\vec{R}_2=\vec{r}_2-\vec{r}_3,\vec{R}_3=\vec{r}_3-\vec{r}_1$,则三体问题的运动方程变为
线圈感抗和电容容抗的计算
By 苏剑林 | 2011-02-26 | 54291位读者 | 引用学到人教版高二物理选修3-2的同学们,眼前会出现许多新的名词,如楞次定律、自感(电感)、感抗、容抗等等。其中对于电感,在中文维基百科给予的解释为:当电流改变时,因电磁感应而产生抵抗电流改变的电动势(EMF,electromotive force)。电路中的任何电流,会产生磁场,磁场的磁通量又作用于电路上。依据楞次定律,此磁通会借由感应出的电压(反电动势)而倾向于抵抗电流的改变。磁通改变量对电流改变量的比值称为自感,自感通常也就直接称作是这个电路的电感。
自感的计算公式为:$U=-L\frac{dI}{dt}$,U是自感电动势,I是电流,负号表示自感电动势反抗原来的电流。L是比例系数,就称为电感,对于同一个线圈来说,L是常数,单位是$V\cdot t//A=\Omega \cdot t$,同时也简记为$H$(亨利)。
最近评论