7 Jun

《虚拟的实在(2)》——为什么引力如此复杂?

上一篇文章里我已经从我自己的理解角度简单说了一下场论的必要性,这次让我们再次谈到这个话题,企图在文字层面上得到更深入的认识。

上一两周的时间,我一直在找资料,主要是线性引力的资料,并且发现了很多有趣的东西,在此一并与大家分享一下。首先,当我在Google中输入“线性引力”时,我发现了一本“奇书”,一本名副其实的“巨著”——《引力论》!洋洋1300多页的大作,三位“超级巨星”——C.W.麦思纳(Charles W.Misner)、K.S.索恩(Kip S.Thorne)、J.A.惠勒(John Archibald Wheeler)——联合编写,恐怕再也找不到哪本书可以PK它的“全明星阵容”了。该书英文名为Gravitation,中文是由台湾翻译的,繁体中文版。全书讲述了引力的研究历史和发展情况,更重要的是几乎每一处历史都给出了数学论证!最最重要的,作者惠勒还是跟爱因斯坦同一个研究时代的人,我们可以最真实的感受到那年代的研究。看到这里,我就迫不及待地想买了,由于各种原因,我们很难买到,到图书馆找,发现有英文版的,就马上借过来了,另外因为买不到中文版,我只好到网上买了电子版,然后打印出来了。不过不是很清晰,而且自我感觉中文翻译不是很好(当然,已经够我们阅读了)。

点击阅读全文...

27 Jun

Project Euler 454 :五天攻下“擂台”

进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目

设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。

这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~

上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。

点击阅读全文...

11 Jun

用PyPy提高Python脚本执行效率

《两百万前素数之和与前两百万素数之和》中,我们用Python求了前两百万的素数和以及两百万前的素数和,并且得到了在Python 3.3中的执行时间如下:

两百万前的素数之和:
142913828922
time: 2.4048174478605646

前两百万的素数之和:
31381137530481
time: 46.75734807838953

于是想办法提高python脚本的执行效率,我觉得在算法方面,优化空间已经比较小了,于是考虑执行器上的优化。在搜索的无意间我看到了一个名词——Psyco!这是python的一个外部模块,导入后可以加快.py脚本的执行。网上也有《用 Psyco 让 Python 运行得像 C一样快》、《利用 psyco 让 Python 程序执行更快》之类的文章,说明Psyco确实是一个可行的选择,于是就跃跃欲试了,后来了解到Psyco在2012年已经停止开发,只支持到Python 2.4版本,目前它由 PyPy所接替。于是我就下载了PyPy

点击阅读全文...

21 Apr

数独的自动推理

写在前面:作为离散数学的实验作业,我选择了研究数独。经过测试发现,数独的自动推理还不算难,我把两种常规的推理思路转化为了计算机代码,并结合了随机性推导,得到了一个解题能力还不错的数独程序。事实上,本文的程序还可以进一步优化,以得到更高能力的数独程序(只需要整理一下代码,加上几个循环和判断即可),但是我实在太懒,没有动力继续弄下去了,就这样先和大家分享吧。最后,笔者认为本文的算法是更接近我们的思维的算法。

数独简介

历史

相传数独源起于拉丁方阵(Latin Square),1970年代在美国发展,改名为数字拼图(Number Place)、之后流传至日本并发扬光大,以数学智力游戏智力拼图游戏发表。在1984年一本游戏杂志《パズル通信ニコリ》正式把它命名为数独,意思是“在每一格只有一个数字”。后来一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould)在1997年3月到日本东京旅游时,无意中发现了。他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上,使这个游戏很快在全世界流行。

台湾于2005年5月由“中国时报”首度引进, 且每日连载, 亦造成很大的回响。台湾数独发展协会(Taiwan Sudoku Association, 简称 TSA)亦为世界解谜联盟会员。香港是在2005年7月30日由AM730在创刊时引入数独。中国大陆是在2007年2月28日正式引入数独。北京晚报智力休闲数独俱乐部(数独联盟前身)在新闻大厦举行加入世界谜题联合会的颁证仪式,成为世界谜题联合会的39个成员之一。(引用自“中文维基百科”: http://zh.wikipedia.org/wiki/数独

点击阅读全文...

10 Jun

两百万前素数之和与前两百万素数之和

标题说了两道比较好玩的编程题,如果读者觉得标题绕的让人眩晕的话,那么让我再说得清晰一点:

两百万前素数之和指的是所有不超过两百万的素数的和;
前两百万素数之和指的是前两百万个素数的和。

我是从子谋的blog中看到这道题目的,前一道题目是Project Euler的第10题,后一道则是我跟子谋探索着玩的。关于子谋的研究和代码,大家可以去他的blog上学习。本文分享一下我自己的想法。

点击阅读全文...

17 Jul

强大的整数数列网站OEIS

OEIS?:http://oeis.org/

近段时间在研究解析数论,进一步感觉数论真是个奇妙的东西,通过它,似乎数学的各个方面——离散的和连续的,实数的和复数的,甚至物理的——都联系了起来。由此也不难体会到当初高斯(Gauss)会说“数学是科学的皇后,数论是数学的皇后。”了。今天,由于在研究素数的个数的上下界问题时,需要思考组合数
$$C_{n}^{2n}=\binom{2n}{n}=\frac{(2n)!}{n!\ n!}$$
最多能被2的多少次方整除。直觉告诉我,次数应该是随着$n$的增大而增大的,但事实却不是,比如$C_{15}^{30}$能够被16整除,但是$C_{20}^{40}$却最多只能被4整除,有种毫无规律的感觉,于是到群里问问各大神。其中,wayne提出

这个可以写个小程序算出一些数据,再在oeis上搜搜

点击阅读全文...

22 Jul

初试在Python中使用PARI/GP

BoJone很喜欢Python,也很喜欢数论,所以就喜欢利用Python玩数论了。平时也喜欢自己动手写一些数论函数,毕竟Python支持大整数高精度运算,这点是非常好的;但是,在很多实际应用中,还是希望能有一个现成的数论函数库来调用。之前尝试过数学研发网的HugeCalc库,但是由于各种不熟悉不了了之。后来论坛上的无心老兄推荐了PARI/GP,小试一下,居然在Python上成功调用了。以后再也不用担心Python上的数论计算问题了,呵呵~

点击阅读全文...

30 Jul

素数之美1:所有素数之积

在之前的欧拉数学中,我们计算过所有素数的倒数之和,得出素数的倒数之和是发散的,从而这也是一个关于素数个数为无穷的证明。在本篇文章中,我们尝试计算所有素数之积,通过一个简单的技巧,得到素数之积的一个上限(以后我们也会计算下限),从而也得到$\pi(n)$的一个上限公式。更重要的,该估计是初等地证明Bertrand假设(说的是n与2n之间定有一个素数)的重要基础之一。本文内容部分参考自《数学天书中的证明》和《解析和概率数论导引》。

素数之积

笔者已经说过,数论的神奇之处就是它总是出人意料地把数学的不同领域联系了起来。读者很快就可以看到,本文的证明和组合数学有重要联系(但仅仅是简单的联系)。关于素数之积,我们有以下结论:

不超过$n$的所有素数之积小于$4^{n-1}$。

点击阅读全文...