伽马函数的傅里叶变换之路
By 苏剑林 | 2014-12-08 | 68796位读者 | 引用伽马函数
$$\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$$
作为阶乘的推广,会让很多初学者感到困惑,对于笔者来说也不例外。一个最自然的问题就是:这般复杂的推广公式是如何得到的?
在cos.name的文章《神奇的伽马函数》中,有比较详细地对伽马函数的历史介绍,笔者细读之后也获益匪浅。但美中不足的是,笔者还是没能从中找到引出伽马函数的一种“自然”的办法。所谓“自然”,并不是说最简单的,而是根据一些基本的性质和定义,直接把伽马函数的表达式反解出来。它的过程和运算也许并不简单,但是思想应当是直接而简洁的。当然,我们不能苛求历史上伽马函数以这种方式诞生,但是作为事后探索是有益的,有助于我们了解伽马函数的特性。于是笔者尝试了以下途径,得到了一些结果,可是也得到了一些困惑。
迟到一年的建模:再探碎纸复原
By 苏剑林 | 2014-12-18 | 83497位读者 | 引用前言:一年前国赛的时候,很初级地做了一下B题,做完之后还写了个《碎纸复原:一个人的数学建模》。当时就是对题目很有兴趣,然后通过一天的学习,基本完成了附件一二的代码,对附件三也只是有个概念。而今年我们上的数学建模课,老师把这道题作为大作业让我们做,于是我便再拾起了一年前的那份激情,继续那未完成的一个人的数学建模...
与去年不同的是,这次将所有代码用Python实现了,更简洁,更清晰,甚至可能更高效~~以下是论文全文。
研究背景
2011年10月29日,美国国防部高级研究计划局(DARPA)宣布了一场碎纸复原挑战赛(Shredder Challenge),旨在寻找到高效有效的算法,对碎纸机处理后的碎纸屑进行复原。[1]该竞赛吸引了全美9000支参赛队伍参与角逐,经过一个多月的时间,有一支队伍成功完成了官方的题目。
近年来,碎纸复原技术日益受到重视,它显示了在碎片中“还原真相”的可能性,表明我们可以从一些破碎的片段中“解密”出原始信息来。另一方面,该技术也和照片处理领域中的“全景图拼接技术”有一定联系,该技术是指通过若干张不同侧面的照片,合成一张完整的全景图。因此,分析研究碎纸复原技术,有着重要的意义。
高斯型积分的微扰展开(一)
By 苏剑林 | 2015-02-14 | 33691位读者 | 引用前段时间在研究费曼的路径积分理论,看到路径积分的微扰方法,也就是通过小参数展开的方式逐步逼近传播子。这样的技巧具有非常清晰的物理意义,有兴趣了解路径积分以及量子力学的读者,请去阅读费曼的《量子力学与路径积分》。然而从数学角度看来,这种逼近的技巧实际上非常粗糙,收敛范围和速度难以得到保证。事实上,数学上发展了各种各样的摄动技巧,来应对不同情况的微扰。下面我们研究积分
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\tag{1}$$
或者更一般地
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon V(x)} dx\tag{2}$$
路径积分的级数展开比它稍微复杂一些,但是仍然是类似的形式。
海伦公式的一个别致的物理推导
By 苏剑林 | 2015-03-27 | 52229位读者 | 引用海伦公式是已知三角形三边的长度$a,b,c$来求面积$S$的公式,是一个相当漂亮的公式,它不算复杂,同时它关于$a,b,c$是对称的,充分体现了三边的同等地位。可是,这样具有对称美的公式推导,往往要经过一个不对称的过程,比如维基百科上的证明,这未免有点美中不足。本文的目的,就是想为此补充一个对称的推导。本文题目为“物理推导”,关键在于“推导”而不是“证明”,同时这里的“物理”并非是通过物理类比而来,而是推导的思想和方法很具有“物理味道”。
$$\sqrt{p(p-a)(p-b)(p-c)}$$
在推导开始之前,笔者给出一个评论:海伦公式似乎是由三边长求三角形面积的所有可能的公式之中最简单的一个。
记录一次爬取淘宝/天猫评论数据的过程
By 苏剑林 | 2015-05-06 | 171245位读者 | 引用笔者最近迷上了数据挖掘和机器学习,要做数据分析首先得有数据才行。对于我等平民来说,最廉价的获取数据的方法,应该是用爬虫在网络上爬取数据了。本文记录一下笔者爬取天猫某商品的全过程,淘宝上面的店铺也是类似的做法,不赘述。主要是分析页面以及用Python实现简单方便的抓取。
笔者使用的工具如下
Python 3——极其方便的编程语言。选择3.x的版本是因为3.x对中文处理更加友好。
Pandas——Python的一个附加库,用于数据整理。
IE 11——分析页面请求过程(其他类似的流量监控工具亦可)。
剩下的还有requests,re,这些都是Python自带的库。
实例页面(美的某热水器):http://detail.tmall.com/item.htm?id=41464129793
It is time.
By 苏剑林 | 2015-05-24 | 55278位读者 | 引用终于可以缓一缓了~~
有留意科学空间的朋友可能发现这段时间更新比较缓慢,这一切还得从今年寒假说起...
今年一月底,由于各种原因,结合自己的兴趣,我找了一份实习工作,内容是Python编程。工作是在华南理工大学的论坛上发布的,说的比较简洁,我也比较简洁地投了简历过去,想不到收到回复了,也被录用了。二月上班,进去之后,才发现原来公司还是一家国内比较知名的电商企业,我的主要工作是数据挖掘...虽然我有一点Python的经验,但是数据挖掘基本上不在行的,所以只能够边工作边学习,疯狂恶补数据挖掘的知识。在这个过程中,我学会了很多关于数据挖掘的东西,要知道,在这之前,我不知道什么叫“特征”,什么是“逻辑回归”、“SVM”...那时候真是万千无知。
胡闹的胜利:将算子引入级数求和
By 苏剑林 | 2015-05-26 | 24054位读者 | 引用在文章《有趣的求极限题:随心所欲的放缩》中,读者“最近倒了”提出了一个新颖的解法,然而这位读者写得并非特别清晰,更重要的是里边的某些技巧似乎是笔者以前没有见过的,于是自行分析了一番,给出了以下解释。
胡闹的结果
假如我们要求级数和
$$\sum_{k=0}^n \binom{n}{k}\frac{A_k}{n^k}$$
这里$A_0=1$。一般而言,我们用下标来标注不同的数,如上式的$A_k,\,k=0,1,2,\dots$,可是有的人偏不喜欢,他们更喜欢用上标来表示数列中的各项,他们把上面的级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}$$
可能读者就会反对了:这不是胡闹吗,这不是让它跟分母的n的k次幂混淆了吗?可是那人干脆更胡闹一些,把级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}=\left(1+\frac{A}{n}\right)^n$$
看清楚了吧?他干脆把$A$当作一个数来处理了!太胡闹了,$A$是个什么东西?估计这样的孩子要被老师赶出课堂的了。
可是换个角度想想,似乎未尝不可。
收到新版《量子力学与路径积分》
By 苏剑林 | 2015-06-06 | 41354位读者 | 引用今天收到高教出版社的王超编辑寄来的费曼著作新版《量子力学与路径积分》了,兴奋ing...
《量子力学与路径积分》是费曼的一本经典著作,更是量子力学的经典著作——它是我目前读过的唯一一本从路径积分出发、并且以路径积分为第一性原理的量子力学著作(徐一鸿的《简明量子场论》好象是我读过的唯一一本纯粹以路径积分为方法的量子场论著作,也非常不错),其它类型的量子力学著作,也有部分谈到路径积分,但无一不是从哈密顿形式中引出路径积分的,在那种情况之下,路径积分只能算是一个推论。但是路径积分明明就作为量子力学的三种形式之一,它应该是可以作为量子力学的基本原理来提出的,而不应该作为另一种形式的推论。费曼做了尝试——从路径积分出发讲解量子力学,而且显然这种尝试是很成功的,至少对于我来说,路径积分是一种非常容易理解的量子力学形式。(这也许跟我的数学基础有关)
最近评论