在文章《初探muP:超参数的跨模型尺度迁移规律》中,我们基于前向传播、反向传播、损失增量和特征变化的尺度不变性推导了muP(Maximal Update Parametrization)。可能对于部分读者来说,这一过程还是显得有些繁琐,但实际上它比原始论文已经明显简化。要知道,我们是在单篇文章内相对完整地介绍的muP,而muP的论文实际上是作者Tensor Programs系列论文的第5篇!

不过好消息是,作者在后续的研究《A Spectral Condition for Feature Learning》中,发现了一种新的理解方式(下称“谱条件”),它比muP的原始推导和笔者的推导都更加直观和简洁,但却能得到比muP更丰富的结果,可谓muP的高阶版本,简明且不失高明的代表作。

准备工作

顾名思义,谱条件(Spectral Condition)跟谱范数(Spectral Norm)相关,它的出发点是谱范数的一个基本不等式:
\begin{equation}\Vert\boldsymbol{x}\boldsymbol{W}\Vert_2\leq \Vert\boldsymbol{x}\Vert_2 \Vert\boldsymbol{W}\Vert_2\label{neq:spec-2}\end{equation}

点击阅读全文...