30 May

科学空间:2010年6月重要天象

20100626月球模拟

20100626月球模拟

进入六月,除除了水星外肉眼可见的几颗大行星观测条件还不错。前半夜的主要观测目标是金星、火星和土星,他们之间的角距离也在逐渐缩小。后半夜木星升起,我们又有机会一睹这颗太阳系内最大行星的风采了。6月21日是夏至节气,当天北半球白昼是一年中最长的,而夜晚最短,且越往北越短。在北极圈以内地区当天太阳将不会落到地平线以下18度之内时,辉光都会影响到我们目视的极限星等,因此夏至前后一段时间北纬50度以上地区不太适合进行天文观测了。而对于北纬30至40度左右的观测者来说,这期间适合开展人造天体,特别是国际空间站的观测活动。

点击阅读全文...

26 Jul

问世间质心(重心)知多少

均匀大圆挖去小圆后,求质心(重心)

均匀大圆挖去小圆后,求质心(重心)

不论在数学题目上,或者是物理应用中,我们总能够看到类似的题目:求一个规则物体挖去(或增加)一个规则物体后,其剩下部分的质心(重心)。

点击阅读全文...

27 Jun

威力巨大的“有向线段”

向量

向量

向量,又称矢量,定义为线性空间中需要大小和方向才能完整表示的一个量。而对于我们来说,还是使用最简单的概念比较合适:向量就是“有向线段”。向量这一概念,来源于物理,而又不仅仅应用于物理。向量的出现,使得几何学和物理学的发展又多了一个强有力的工具,记得有一句这样的话:“对数的出现,延长了天文学家的寿命。”而我可以毫不夸张地说,向量的发展,也在不断地延长着数学家和物理学家的寿命!

点击阅读全文...

10 Sep

级数求和——近似的无穷级数

级数是数学的一门很具有实用性的分支,而级数求和则是级数研究中的核心内容之一。很多问题都可以表示成一个级数的和或积,也就是$\sum_{i=1}^n f(i)$或者是$\prod_{i=1}^n f(i)$类型的运算。其中,$\ln(\prod_{i=1}^n f(i))=\sum_{i=1}^n \ln(f(i))=k$,因此$\prod_{i=1}^n f(i)=e^k$,也就是说,级数求积也可以变为级数求和来计算,换言之我们可以把精力放到级数求和上去。

为了解决一般的级数求和问题,我们考虑以下方程的解:
$$f(x+\epsilon)-f(x)=g(x)\tag{1}$$其中g(x)是已知的以x为变量的函数式,$\epsilon $是常数,初始条件是$f(k)=b$,要求f(x)的表达式。

点击阅读全文...

4 Oct

哈勃定律——宇宙各向同性的体现

universe_mystery_expand

universe_mystery_expand

1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究。当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系。

不少宇宙学的书籍中都提到了标题,那么,为什么哈勃定律是宇宙各向同性的体现?或者说为什么宇宙各向同性就必然导致哈勃定律?

首先我们得需要了解一下宇宙学原理,它告诉我们宇宙在大尺度范围是均匀的、各向同性的。基于这个原理,我们会得到一些很奇怪的东西,如宇宙中的每一点都是宇宙的中心。另外,我们还可以得到:宇宙的(整体)运动情况在每一个方向都应该取相同的形式。

点击阅读全文...

22 Oct

未来的天地枢纽——太空天梯

开发太空天梯

开发太空天梯

漫话
BoJone认为,科学的意义并非在于无休止地计算,而是利用有限的科学理论来解释尽可能多的自然、生活现象。正因如此,科学家们追求和谐、简洁、优美的科学理论。科学就是想方设法地把未知变成已知,并在此基础上进一步发展。

随着媒体技术的发展,我们接触信息的渠道越来越多。每每我们从互联网或报纸上看到一则科学新闻时,我们几乎都会为之兴奋。但是,外行看热闹,内行看门道。对于真正热爱科学的朋友来说,也许会更加感兴趣新闻内容的来由。也就是说,我们希望进一步了解结论是怎样得出来的——哪怕只是在很浅的层面上认识。

点击阅读全文...

30 Oct

太阳帆技术的粗浅分析(补充)

上星期,BoJone凭借简陋的物理知识,发表了《太阳帆技术的粗浅分析》一文,并转到了牧夫天文论坛上,希冀能够抛砖引玉。很幸运得到了牧夫上的高手的指正。他们指出了我的文章中$a=a_{ray}-a_G > 0$这一条件过于苛刻。因为,除了太阳光压外,还有另外一种力量能够战胜太阳引力——惯性离心力

重新把上篇文章的一个结果列出来:
$$a=a_{ray}-a_G=(\frac{L}{2\pi c (\rho h+{m'}/S)}-GM_{sun})\frac{1}{r^2} $$

点击阅读全文...

19 Dec

太阳系是稳定的吗?

Greg Laughlin 文 Shea 译
转载自科学松鼠会

当牛顿遇上“混沌”,行星的轨道会失控吗?

UnstableSS_Pendulum

UnstableSS_Pendulum

点击阅读全文...