28 Dec

《费恩曼物理讲义》在线版

在线阅读地址:
http://www.feynmanlectures.caltech.edu/

刚在浏览《朗道集结号》的微博时,发现了这一造福大众的消息。难得的是,这个在线版通过MathJax使用Latex排版,阅读效果完全丝毫不输于纸质版的,还可以自由复制。只是遗憾只有英文版的,也许有一天心血来潮,我也弄个在线的中文版出来,呵呵。一切皆有可能。

费曼的物理讲义是一套地地道道的物理书,它是一次美妙的物理之旅。纵使你可能已经读过相当多的物理教材,但是读读费曼的讲义还是大有裨益的,它给我们讲述了什么才是物理,怎么才能学物理。

29 Dec

有质动力:倒立单摆的稳定性

前几天在“宇宙的心弦”浏览网页时,发现他更新了一篇很有趣的文章,叫《倒立单摆的稳定性与Ponderomotive Force》(果然,物理系的能接触到各种各样有趣的现象),里边谈到通过施加一个运动在单摆上面,倒立的单摆也可以是稳定的。这勾起了我的兴趣,遂也计算了一番。

点击阅读全文...

5 Jan

不确定性原理的矩阵形式

作为量子理论的一个重要定理,不确定性原理总是伴随着物理意义出现的,但是从数学的角度来讲,把不确定性原理的数学形式抽象出来,有助于我们发现更多领域的“不确定性原理”。

本文中,我们将谈及不确定性原理的n维矩阵形式。首先需要解释给大家的是,不确定性原理其实是关于“两个厄密算符与一个单位向量之间的一条不等式”。在量子力学中,厄密算符对应着无穷维的厄密矩阵;而所谓厄密矩阵,就是一个矩阵同时取共轭和转置之后,等于它自身。但是本文讨论一个更简单的情况,那就是n维实矩阵,n维实矩阵中的厄密矩阵就是我们所说的实对称矩阵了。

设$\boldsymbol{x}$是一个$n$维单位向量,即$|\boldsymbol{x}|=1$,而$\boldsymbol{A}$和$\boldsymbol{B}$是n阶实对称矩阵。在量子力学中,$\boldsymbol{x}$就是波函数,但是在这里,它只不过是一个单位实向量;并记$\boldsymbol{I}$是$n$阶单位阵。

考虑
$$\bar{A}=\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x},\bar{B}=\boldsymbol{x}^{T}\boldsymbol{B}\boldsymbol{x}$$
从这些记号可以看出,这些量对应着可观测量的期望值。当然,如果不懂量子力学,可以只看上面的矩阵形式。

点击阅读全文...

6 Jan

2013年全年天象

Astronomy Calendar of Celestial Events
2013年全年天象

翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html

(北京时间)

2011年版本

2012年版本

日期 星期 时刻 天象

一月
01 二 金星:20.9° W
02 三 08:59 地球过近日点: 0.9833 AU
03 四 21:33 象限仪座流星雨极大: ZHR = 120
05 六 11:58 下弦月
06 日 03:54 月合角宿一(Spica): 0.6° N

点击阅读全文...

4 Mar

平面曲线的曲率的复数表示

开学已经是第二周了,我的《微分几何》也上课两周了,进度比较慢,现在才讲到平面曲线的曲率。在平面曲线$\boldsymbol{t}(t)=(x(t),y(t))$某点上可以找出单位切向量。
$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$
其中$ds^2 =dx^2+dy^2$,将这个向量逆时针旋转90度之后,就可以定义相应的单位法向量$\boldsymbol{n}$,即$\boldsymbol{t}\cdot\boldsymbol{n}=0$。

常规写法

让我们用弧长$s$作为参数来描述曲线方程,$\boldsymbol{t}(s)=(x(s),y(s))$,函数上的一点表示对$s$求导。那么我们来考虑$\dot{\boldsymbol{t}}$,由于$\boldsymbol{t}^2=1$,对s求导得到
$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$

点击阅读全文...

7 Feb

视频演示:费曼的茶杯

为了形象地展示为什么有些系统需要旋转720度而不是360度才能恢复原状,费曼想到了一个“茶杯法”。看了“茶杯法”的步骤之后,我突然想起了电影《太极1》的梁小龙的一个端药镜头,正好对应着费曼的“茶杯法”,遂把镜头剪了出来,供大家欣赏。

请仔细观察梁小龙的手转了多少圈?

点击阅读全文...

27 Jun

Project Euler 454 :五天攻下“擂台”

进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目

设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。

这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~

上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。

点击阅读全文...

16 Feb

带点电荷的均匀杆

在讨论了倒立单摆的相关分析之后,胡雄大哥(笔者的一位好友)提出了一个问题:一根均匀杆,当然质量不可忽略,只有一个力(简单起见,可以先假设为恒力)作用在其中一个点上(简单起见,可以假设为端点),那么杆是怎么运动的?

其实笔者学了不少的经典力学,也分析了不少问题,但就是对于力矩、角动量等还是模模糊糊的,对于我来说,大多数经典力学问题就是“作用量+变分”,本题也不例外。为了让题目的实验意义更加明确,不妨将题目改成:

一根中性的均匀杆,它的一个端点带有一个点电荷,那么它(仅仅)在一个均匀电场中的运动是怎样的?

在这里,我们进一步简化,只考虑平面问题。杆属于刚体,为了描述杆的运动,我们需要描述杆上一点的运动,以及杆绕这一点的转动,也就是说,即使只考虑平面的情况,该系统也是有三个自由度的。设杆的带电荷那一端点的坐标为$(x,y)$,为了描述杆的转动,以这一端点为中心建立极坐标系,设杆的极角为$\theta$。设电势的函数为$U(x,y)$,因为只有一点带电(受力),因此势能是简单的。

点击阅读全文...