30 Sep

天宫一号成功发射!

昨晚九点十六分(据说准确时间是2011年9月29日21时16分03.507秒),天宫一号升空!

天宫一号发射

天宫一号发射

点击阅读全文...

2 Oct

[欧拉数学]素数有无穷多个的两个证明

素数是数的基本单元,就如同高楼大厦中的砖块一样。显然,素数有无穷多个是数论研究价值的前提。不然,数的研究就局限在有限个素数之内,那么很多数字就会失去了它们的魅力。就好比只有有限块砖头,就不能创建出建筑的奇迹一般。下面介绍两个关于素数无穷的经典证明,其中一个是欧几里得的证明,这是最原始、最简单的证法,相信很多读者已经学习过了,在此还是要提一下;另外一个是我在《怎样解题》中看到的,原作者是欧拉,也是一个非常美妙的证明。当然,本文强调的思想,论证过程可能会有一些不严谨的地方,请读者完善^_^

一、欧几里得证明

这个证明思想非常简单:若干个素数的积加上1后会产生新的素数因子。要是素数只有n个,那么我们就把它们相乘,然后加上1,得到的将会是什么呢?如果是一个素数,那么将会与素数只有n个矛盾;如果是一个合数,它除以原来的n个素数都不是整数,那么它就会拥有新的素数因子了,这还是和只有n个素数矛盾。不论哪种情况,只有素数有限,就会得出矛盾,于是素数必然是无限的。

点击阅读全文...

23 Oct

2012年全年天象大观

Astronomy Calendar of Celestial Events
2012年全年天象

点击打开:http://kexue.fm/AC.html

翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html

(北京时间)

点击阅读全文...

18 Nov

[欧拉数学]黎曼ζ函数

欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!

黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。

点击阅读全文...

19 Nov

[欧拉数学]素数倒数之和

上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门

接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理

无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!

点击阅读全文...

11 Dec

月全食刚过...

昨晚上演了一场精彩的月全食。

在广东,晴天的代价果然是寒冷。我们这里从星期一开始就很闷热,天空很多云;前天开始转冷,我就想有好戏看了。果不其然,昨天晚上出现了难得的晴天,大家都看到了一场精彩的月全食——全班、甚至全校都出动了,晚自习都不上了!

我喜欢这样精彩的天象,我更喜欢这样的氛围:全场出动,围观盛会!在这过程中,拿着小双筒、小单筒,对着月光,对着星星,慢慢地看着月亮缺块、变暗,感觉多美,仿佛仙境。我们班的“兔子”都说要在全盛时刻“奔月找嫦娥”,哈哈。

虽然很冷,但是大家的热情很高(遗憾的是忘记拍几张照片了)。我们谈到了下一次的月食、日食,我们相约在高考前夕——5月21日和6月6日——共赏日环食和金星凌日。哇!太棒了!

^_^

谨此留念。

13 Jan

混沌的世界——“星之轨迹”的研究

(本文已被刊登在2012年1月的《天文爱好者》上,于笔者而言这是一份很棒的新年礼物!)

《天爱》杂志页面.JPG

在去年第七期《天爱》上,我们看到了N体问题所呈现出来的一些对称、漂亮的周期轨道,这体现了N体问题和谐有序的一面。但是这仅仅是N体问题的冰山一角,笔者也提到过N体问题的本质是混沌、无序的,通俗来讲就是非常乱,无法用数学方程来精确描述。这看起来是一种不完美。但试想,探索当初伽利略将望远镜对准月球后,看到的是如想象中光滑的月面,那么他还会惊叹宇宙的神奇吗?

本文就让我们来更深入地了解一下N体问题的研究历史。

观测&拟合时代

由于人类的自我优越感以及日月星辰东升西落的经验,让我们长期都认为地球是宇宙的中心。第一个比较系统提出地心说的人当属天文学家欧多克斯(Eudoxus,死于公元前347年左右),但他的地心说是非常粗糙的,以至于无法解释很多基本现象,如无法准确预言日食和解释行星逆行等。但亚里士多德接受了地心说,并且由于他在政治和科学上的权威,使地心说免去了夭折的命运。后来托勒密通过他的本轮,完善了地心说,使之延续到了16世纪。

点击阅读全文...

21 Jan

[问题解答]木杆平衡

昨天一个QQ好友让我帮忙解决一道物理题目:

长为L的均匀木杆重Q,在木杆上离A端L/4处放有一重为Q/2的重物,平衡时,木杆AB与水平面的夹角θ有多大?

木杆平衡

木杆平衡

看上去挺有趣的。于是我先记了下来,今天早上思考了一会儿,得出了下面的结果。其中我解答并没有直接受力分析,而是用了我们之前已经谈到过的“最小势能原理”:平衡系统中的势能必取极(小)值

点击阅读全文...