矩阵化简二次型(无穷小近似处理抛物型)
By 苏剑林 | 2012-12-25 | 25354位读者 | 引用(阅读本文最好有一定的线性代数基础,至少对线性代数里边的基本概念有所了解。)
这学期已经接近尾声了,我们的《解析几何》已经讲到化简二次曲线了。可是,对于没有线性代数的其他同学们,直接用转轴和移轴这个计算公式来变换,那计算量会让我们很崩溃的;虽然那个“不变量”方法计算上有些简单,却总让人感到很诡异,总觉得不知从何而来,而且又要记一堆公式。事实上,如果有线性代数的基础,这些东西变得相当好理解的。我追求用统一的方法求解同一种问题,即用统一的方式处理所有的二次型,当然也希望计算量简单一点。
一般的模型
一般的二次型可以写成
$$x^T A x + 2 b^T x + c=0$$
其中$x,b$都是n维列向量(各元素为$x_i$和$b_i$),A是n阶方阵(各元素为$a_{ij}$),c是常数。在这里,我们只讨论n=2和n=3的情况。化简二次型的过程,可以归结为A矩阵的简化。
纠缠的时空(一):洛仑兹变换的矩阵
By 苏剑林 | 2013-02-01 | 39427位读者 | 引用我现在是越来越佩服爱因斯坦了,他的相对论是他天才的思想的充分体现。只有当相对论提出之后,宏观物理的大多数现象和规律才得到了统一的描述。狭义相对论中爱因斯坦对我们速度叠加常识的否定已经显示了他莫大的勇气,而一项头脑风暴性的工作——广义相对论则将他惊人的创造力体现得完美无瑕。我是被量子力学的数学吸引的,于相对论则是被相对论美妙的逻辑体系吸引。当然,其中也有相当美妙的数学。
狭义相对论中的核心内容之一就是被称为洛仑兹变换的东西,这在相对论发表之前已经由洛仑兹推导出来了,只不过他不承认他的物理意义,也就没有就此进行一次物理革命,革命的任务则由爱因斯坦完成。很久前我就已经看过洛仑兹变换的推导,那是直接设一种线性关系来求解的。但是我总感觉那样的推导不够清晰(也许是我的理解方式有问题吧),而且没有说明狭义相对论的两条原理如何体现出现。所以在研究过矩阵之后,我就尝试用矩阵来推导洛仑兹变换,发现效果挺好的,而且我觉得能够体现出相对论中的对称性。
两条原理
1、狭义相对性原理:在所有惯性系中,物理定律有相同的表达形式。这是力学相对性原理的推广,它适用于一切物理定律,其本质是所有惯性系平权。
2、光速不变原理:所有惯性系中,真空中的光速都等于c=299 792 458 m/s,与光源运动无关。迈克耳孙-莫雷实验是其有力证明。
学习场论(电磁场、重力场)
By 苏剑林 | 2013-04-25 | 41428位读者 | 引用《虚拟的实在(3)》——相对论动力学
By 苏剑林 | 2013-06-20 | 27852位读者 | 引用半个多月没有写文章了,一是因为接近期末考了,比较忙,当然最主要的原因还是人变懒了,呵呵,别人是忙里偷闲,我是闲里偷懒了。
这篇文章主要跟大家分享一下相对论动力学的知识。我们之前已经接触过相对论的坐标变换了,接下来的任务应该是把经典力学的动力学定律改成为相对论版本的,这显然也是学习场论的必经之路——懂得如何构造力学定律的相对版版本,是懂得构造相对论性场的基础。和朗道的《力学》与《场论》一样,我们的主线就是“最小作用量原理”。让我们回忆一下,在经典力学中,一个自由粒子的作用量是
$$S_m=\int Ldt=\int \frac{1}{2} m v^2dt$$
《虚拟的实在(2)》——为什么引力如此复杂?
By 苏剑林 | 2013-06-07 | 32892位读者 | 引用上一篇文章里我已经从我自己的理解角度简单说了一下场论的必要性,这次让我们再次谈到这个话题,企图在文字层面上得到更深入的认识。
上一两周的时间,我一直在找资料,主要是线性引力的资料,并且发现了很多有趣的东西,在此一并与大家分享一下。首先,当我在Google中输入“线性引力”时,我发现了一本“奇书”,一本名副其实的“巨著”——《引力论》!洋洋1300多页的大作,三位“超级巨星”——C.W.麦思纳(Charles W.Misner)、K.S.索恩(Kip S.Thorne)、J.A.惠勒(John Archibald Wheeler)——联合编写,恐怕再也找不到哪本书可以PK它的“全明星阵容”了。该书英文名为Gravitation,中文是由台湾翻译的,繁体中文版。全书讲述了引力的研究历史和发展情况,更重要的是几乎每一处历史都给出了数学论证!最最重要的,作者惠勒还是跟爱因斯坦同一个研究时代的人,我们可以最真实的感受到那年代的研究。看到这里,我就迫不及待地想买了,由于各种原因,我们很难买到,到图书馆找,发现有英文版的,就马上借过来了,另外因为买不到中文版,我只好到网上买了电子版,然后打印出来了。不过不是很清晰,而且自我感觉中文翻译不是很好(当然,已经够我们阅读了)。
《新理解矩阵5》:体积=行列式
By 苏剑林 | 2013-12-25 | 48965位读者 | 引用在文章《新理解矩阵3》:行列式的点滴中,笔者首次谈及到了行列式的几何意义,它代表了n维的“平行多面体”的“体积”。然而,这篇文章写于我初学矩阵之时,有些论述并不严谨,甚至有些错误。最近笔者在写期末论文的时候,研究了超复数的相关内容,而行列式的几何意义在我的超复数研究中具有重要作用,因此把行列式的几何意义重新研究了一翻,修正了部分错误,故发此文,与大家分享。
一个$n$阶矩阵$A$可以看成是$n$个$n$维列向量$\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_n$的集合
$$A=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_n)$$
从代数的角度来看,这构成了一个矩阵;从几何的角度来看,这$n$个向量可以建立一个平行$n$维体。比如:平行四边形就是“平行二维体”,平行六面体就是“平行三维体”,高阶的只需要相应类比,不需要真正想象出高维空间的立体是什么样。
高维空间的叉积及其几何意义
By 苏剑林 | 2013-12-26 | 59305位读者 | 引用向量之间的运算有点积和叉积(Cross Product,向量积、外积),其中点积是比较简单的,而且很容易推广到高维;但是叉积不同,一般来说它只不过是三维空间中的东西。叉积的难以推广在于它的多重含义性,如果将向量及其叉积放到张量里边来看(这属于微分形式的内容),那么三维以上的向量叉积是不存在的;但是如果只是把叉积看成是“由两个向量生成第三个与其正交的向量”的工具的话,那么叉积也是可以高维推广的,而且推广的技巧非常巧妙,与三维空间的叉积也非常相似。
回顾三维空间
为了推广三维空间的叉积,首先回顾三维空间的叉积来源是有益的。叉积起源于四元数乘法,但是从目的性来讲,我们希望构造一个向量$\boldsymbol{w}=(w_1,w_2,w_3)$,使得它与已知的两个不共线的向量$\boldsymbol{u}=(u_1,u_2,u_3),\boldsymbol{v}=(v_1,v_2,v_3)$垂直(正交)。从普适性的角度来讲,我们还希望构造出来的向量没有任何“奇点”,为此,我们只用乘法构造。至于叉积的几何意义,则是后话,毕竟,先达到基本的目的再说。
Project Euler 454 :五天攻下“擂台”
By 苏剑林 | 2014-06-27 | 29038位读者 | 引用进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目:
设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。
这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~
上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。
最近评论