8 Nov

力学系统及其对偶性(一)

写在前头

经过两年多的开发,本站所用的Typecho终于发布了新版,虽然还是beta,但是我还是迫不及待地升级了。当然,前台并没有变化,但是几乎整个程序都是重构了的,后台也更加清爽了。本文是新版程度的第一篇文章,使用Markdowm语法编写。

----------

牛顿Vs胡克

在所有的力学系统中,最简单的或许就是简谐运动了。它由一个最简单的常系数线性微分方程组描述:
$$\ddot{\boldsymbol{x}}+\omega^2 \boldsymbol{x}=0$$

这也就是物体在弹性形变的胡克定律所描述的力的作用下的运动情况。我们可以很快用三角函数写出该方程的精确解。相比之下,二体问题的解就复杂多了,虽然二体问题也是精确可解的,但是显然没有简谐运动那样简单明了。然而,除了都是有心力之外,它们之间还有一个共同点,它们的运动轨道都是椭圆!(严格来说是圆锥曲线,因为还可能有抛物线跟双曲线,但是不失一般性,本文只分析椭圆轨道)两者之间是否存在着某种联系呢?如果可以将二体问题转变为简谐运动,那么分析过程应该可以大大化简了?

点击阅读全文...

15 Nov

力学系统及其对偶性(三)

在上一篇文章中,我已经初步地从最小作用量原理的角度来观察对偶定律的表现。虽然那是一种便捷有效的方法,但是还是给我们流下了一些遗憾。上一节是从几何形式的作用量原理出发的,而没有在一般形式的作用量框架下讨论。因为如果在$S=\int Ldt=\int (T-U)dt$的形式下讨论坐标变换问题会出现困难,困难源于我们进行了变换$d\tau=|z|^2 dt$,这导致了时间和空间的耦合,变分不能简单地进行。但是,这并非无法解决的问题。我们还是可以在基本的作用量原理之下讨论变换问题。下面将对此问题进行讨论。

变分中的变量代换

考虑一个一般的保守系统的作用量:
$$S=\int_{t_1}^{t_2} L(q,\frac{dq}{dt})dt$$

点击阅读全文...

26 Nov

求解微分方程的李对称方法(二)

由于重装系统时的粗心大意,笔者把《求解微分方程的李对称方法》的Word文档弄丢了,更不幸的是存有该文档的U盘也弄丢了~没办法,只好重新把这篇文章录入了。幸好之前曾把它打印成纸质版,还有旧稿可以参考。现发布《求解微分方程的李对称方法(二)》,希望能够为对李对称方法有兴趣的朋友提供些许资源。

相比(一),(二)将所有内容重新用CTex录入了,果然,$\LaTeX$才是写数学论文软件中的佼佼者,虽然是纯代码编辑,但是这正符合我追求简洁清晰的风格。在内容上,(二)增加了一阶常微分方程组的内容,并对(一)的部分细节做了修改,本文完成后就初步相对完整地叙述了一阶常微分方程组的李对称积分的思路,内容增加到了13页。而在接下来的(三)中,将会提供李代数的内容;如果有(四)的话,就会谈到李对称方法的计算机实现。希望大家会喜欢这系列文章。更期待大家的读后感(包括挑错)^_^

点击阅读全文...

5 Dec

三角函数幂的定积分

最近的我的主要学习是在研究路径积分,在推导路径积分的一种新的变换方法(或者是一个新的视角吧),但是有道坎还是迈不过去,因此blog中也一直更新寥寥。说到积分与微分,这两个本是互逆的东西,但是在复数的统一之下,它们两个去可以相互转化。比如说,薛定谔方程是量子力学的微分形式,而路径积分实际上可以说是量子力学的积分形式,这让我有些想法,是不是任何微分形式的数学都存在一个积分形式的版本呢?如果是,是微分版本优还是积分版本优?

在数学分析中,我们会感觉到求导会比求积分容易很多,求导有现成的公式等等。但是微分有个最大的缺点,它是多分量的,比如,势函数是一个标量,但是微分(求梯度)之后就变成了三分量的矢量(即作用力),多分量事实上是不好处理了,为了处理这类问题,又引入了大量的算符。积分的特点在于它的标量性,也许计算很复杂,但是思想确实容易把握的,我更喜欢积分形式的理论(比如作用量原理、路径积分等。)

说到数学分析中常见而又著名的定积分,不得不提到以下三角函数积分了。
$$\int_0^{\pi/2} \sin^{2n} \theta d\theta$$
不难证明,它也等于
$$\int_0^{\pi/2} \cos^{2n} \theta d\theta$$

点击阅读全文...

31 Dec

写在2013年即将逝去之际

2013年即将过去,而我的大二也即将过去一半了。这一学期广播台的事情忙了很多,数学物理的进展比想象中稍微缓了一些,主要的进步是在向量分析(场论)、路径积分和微分方程等方面。下学期开始分流了,我选择了非师,但事实上,我更喜欢师范类的课程,我选择非师的唯一原因是选择师范需要修教育学和心理学。幸好,我们创新班的自由度比较多,可以自由选择下学期的课程,我选择了六门数学课程:

1、常微分方程;
2、复变函数;
(这两门纯粹是凑学分的,我觉得他能讲的东西我都懂了,而我认为很重要的部分他不讲...)
3、数理统计;
(这门主要的想法是为路径积分以及统计力学奠基)
4、微分几何;
(主要是广义相对论的奠基,还有理论物理形式)
5、偏微分方程;
(第4、5都是大三的课程,我是去跟大三一起上的)
6、离散数学。

点击阅读全文...

6 Jan

2013年全年天象

Astronomy Calendar of Celestial Events
2013年全年天象

翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html

(北京时间)

2011年版本

2012年版本

日期 星期 时刻 天象

一月
01 二 金星:20.9° W
02 三 08:59 地球过近日点: 0.9833 AU
03 四 21:33 象限仪座流星雨极大: ZHR = 120
05 六 11:58 下弦月
06 日 03:54 月合角宿一(Spica): 0.6° N

点击阅读全文...

19 Jan

宇宙驿站服务器升级完毕

这一周科学空间时断时续的,原因是原来的服务器两个内存条坏了,内存不够用。

后来天文台决定给我们换一台服务器,这两天主要在转移数据,从而不能访问。

目前,基本上已经转移好了,服务器升级工作基本完成。新服务器的升级,CPU从原来的8核升级为48核,内存从16GB升级为64GB。再次感谢国家天文台宇宙驿站给予我们的服务^_^感谢各位技术人员的努力,让我们一起把中文科普事业做得更好~

27 Jun

Project Euler 454 :五天攻下“擂台”

进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目

设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。

这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~

上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。

点击阅读全文...