重新写了之前的新词发现算法:更快更好的新词发现
By 苏剑林 | 2019-09-09 | 98325位读者 | 引用新词发现是NLP的基础任务之一,主要是希望通过无监督发掘一些语言特征(主要是统计特征),来判断一批语料中哪些字符片段可能是一个新词。本站也多次围绕“新词发现”这个话题写过文章,比如:
在这些文章之中,笔者觉得理论最漂亮的是《基于语言模型的无监督分词》,而作为新词发现算法来说综合性能比较好的应该是《更好的新词发现算法》,本文就是复现这篇文章的新词发现算法。
突破瓶颈,打造更强大的Transformer
By 苏剑林 | 2020-04-13 | 130204位读者 | 引用自《Attention is All You Need》一文发布后,基于Multi-Head Attention的Transformer模型开始流行起来,而去年发布的BERT模型更是将Transformer模型的热度推上了又一个高峰。当然,技术的探索是无止境的,改进的工作也相继涌现:有改进预训练任务的,比如XLNET的PLM、ALBERT的SOP等;有改进归一化的,比如Post-Norm向Pre-Norm的改变,以及T5中去掉了Layer Norm里边的beta参数等;也有改进模型结构的,比如Transformer-XL等;有改进训练方式的,比如ALBERT的参数共享等;...
以上的这些改动,都是在Attention外部进行改动的,也就是说它们都默认了Attention的合理性,没有对Attention本身进行改动。而本文我们则介绍关于两个新结果:它们针对Multi-Head Attention中可能存在建模瓶颈,提出了不同的方案来改进Multi-Head Attention。两篇论文都来自Google,并且做了相当充分的实验,因此结果应该是相当有说服力的了。
再小也不能小key_size
第一个结果来自文章《Low-Rank Bottleneck in Multi-head Attention Models》,它明确地指出了Multi-Head Attention里边的表达能力瓶颈,并提出通过增大key_size的方法来缓解这个瓶颈。
无监督分词和句法分析!原来BERT还可以这样用
By 苏剑林 | 2020-06-10 | 86873位读者 | 引用BERT的一般用法就是加载其预训练权重,再接一小部分新层,然后在下游任务上进行finetune,换句话说一般的用法都是有监督训练的。基于这个流程,我们可以做中文的分词、NER甚至句法分析,这些想必大家就算没做过也会有所听闻。但如果说直接从预训练的BERT(不finetune)就可以对句子进行分词,甚至析出其句法结构出来,那应该会让人感觉到意外和有趣了。
本文介绍ACL 2020的论文《Perturbed Masking: Parameter-free Probing for Analyzing and Interpreting BERT》,里边提供了直接利用Masked Language Model(MLM)来分析和解释BERT的思路,而利用这种思路,我们可以无监督地做到分词甚至句法分析。
动手做个DialoGPT:基于LM的生成式多轮对话模型
By 苏剑林 | 2020-09-07 | 106308位读者 | 引用线性Attention的探索:Attention必须有个Softmax吗?
By 苏剑林 | 2020-07-04 | 229878位读者 | 引用众所周知,尽管基于Attention机制的Transformer类模型有着良好的并行性能,但它的空间和时间复杂度都是$\mathcal{O}(n^2)$级别的,$n$是序列长度,所以当$n$比较大时Transformer模型的计算量难以承受。近来,也有不少工作致力于降低Transformer模型的计算量,比如模型剪枝、量化、蒸馏等精简技术,又或者修改Attention结构,使得其复杂度能降低到$\mathcal{O}(n\log n)$甚至$\mathcal{O}(n)$。
前几天笔者读到了论文《Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention》,了解到了线性化Attention(Linear Attention)这个探索点,继而阅读了一些相关文献,有一些不错的收获,最后将自己对线性化Attention的理解汇总在此文中。
Attention
当前最流行的Attention机制当属Scaled-Dot Attention,形式为
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\boldsymbol{Q}\boldsymbol{K}^{\top}\right)\boldsymbol{V}\label{eq:std-att}\end{equation}
这里的$\boldsymbol{Q}\in\mathbb{R}^{n\times d_k}, \boldsymbol{K}\in\mathbb{R}^{m\times d_k}, \boldsymbol{V}\in\mathbb{R}^{m\times d_v}$,简单起见我们就没显式地写出Attention的缩放因子了。本文我们主要关心Self Attention场景,所以为了介绍上的方便统一设$\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}\in\mathbb{R}^{n\times d}$,一般场景下都有$n > d$甚至$n\gg d$(BERT base里边$d=64$)。
强大的NVAE:以后再也不能说VAE生成的图像模糊了
By 苏剑林 | 2020-07-10 | 113498位读者 | 引用昨天早上,笔者在日常刷arixv的时候,然后被一篇新出来的论文震惊了!论文名字叫做《NVAE: A Deep Hierarchical Variational Autoencoder》,顾名思义是做VAE的改进工作的,提出了一个叫NVAE的新模型。说实话,笔者点进去的时候是不抱什么希望的,因为笔者也算是对VAE有一定的了解,觉得VAE在生成模型方面的能力终究是有限的。结果,论文打开了,呈现出来的画风是这样的:
然后笔者的第一感觉是这样的:
W!T!F! 这真的是VAE生成的效果?这还是我认识的VAE么?看来我对VAE的认识还是太肤浅了啊,以后再也不能说VAE生成的图像模糊了...
BERT-of-Theseus:基于模块替换的模型压缩方法
By 苏剑林 | 2020-07-17 | 94877位读者 | 引用最近了解到一种称为“BERT-of-Theseus”的BERT模型压缩方法,来自论文《BERT-of-Theseus: Compressing BERT by Progressive Module Replacing》。这是一种以“可替换性”为出发点所构建的模型压缩方案,相比常规的剪枝、蒸馏等手段,它整个流程显得更为优雅、简洁。本文将对该方法做一个简要的介绍,给出一个基于bert4keras的实现,并验证它的有效性。
模型压缩
首先,我们简要介绍一下模型压缩。不过由于笔者并非专门做模型压缩的,也没有经过特别系统的调研,所以该介绍可能显得不专业,请读者理解。
L2正则没有想象那么好?可能是“权重尺度偏移”惹的祸
By 苏剑林 | 2020-08-14 | 37142位读者 | 引用L2正则是机器学习常用的一种防止过拟合的方法(应该也是一道经常遇到的面试题)。简单来说,它就是希望权重的模长尽可能小一点,从而能抵御的扰动多一点,最终提高模型的泛化性能。但是读者可能也会发现,L2正则的表现通常没有理论上说的那么好,很多时候加了可能还有负作用。最近的一篇文章《Improve Generalization and Robustness of Neural Networks via Weight Scale Shifting Invariant Regularizations》从“权重尺度偏移”这个角度分析了L2正则的弊端,并提出了新的WEISSI正则项。整个分析过程颇有意思,在这里与大家分享一下。
相关内容
这一节中我们先简单回顾一下L2正则,然后介绍它与权重衰减的联系以及与之相关的AdamW优化器。
L2正则的理解
为什么要添加L2正则?这个问题可能有多个答案。有从Ridge回归角度回答的,有从贝叶斯推断角度回答的,这里给出从扰动敏感性的角度的理解。
最近评论