24 Oct

行星密度与其公转周期(更新)

===我与《天文爱好者》不得不说的故事===

去年在订阅2012年的《天文爱好者》时,考虑到之后就要上大学了,所以只是订了半年,因此过了今年六月我就没有看新的《天文爱好者》了。暑假的两个月,还有九月、十月,将近四个月没有看它了,我本以为我已经适应了没有天爱的日子。

大概一个星期前,我在天爱的淘宝网重新买了最近四个月的《天文爱好者》,18日下午,我再见了它。那天晚上,我突然觉得很感动,有种感慨万千的感觉。虽然这么久没有看了,但是再看的感觉是如此的熟悉,如此的温馨。我原来觉得天文只是我的一个业余兴趣,如同生物化学那样,但在那瞬间我明白了我真的爱着天文,而且时间和空间的距离并不能减少我的爱!在那时,我决定了,我一定要从事天文相关专业——虽然我只是一个数学系学生

==========行星周期下限==========

(2012.10.25:zwhzjh提出攝动力公式有错误,修正了攝动力的计算公式,之前写少了一个因子2,还有在最后的实际检验时,为了追求结果的合理性,忽略了方法的科学性,现在已经进行了修正,欢迎各位提更多意见。)

首颗被发现的系外行星

首颗被发现的系外行星

本文要探讨的东西是我在阅读《天文爱好者》的时候偶然发现的。在发现系外行星以前,人们通常都认为像木星这样的气态巨行星,公转周期都应该在十年以上。因此当瑞士天文学家米歇尔·迈耶和迪戴尔·邱洛兹发现第一颗系外行星时,他们简直无法确信自己的发现,因为这颗类木行星的公转周期只有短短的4.2天!但是经过确认,这的确是一颗系外行星,颠覆了过去的看法。我饶有兴致地研究下去,企图推导出某一密度行星的公转周期下限

各位读者不妨先估计一下,它会与什么物理量有关?行星质量?母星质量?还是...?

点击阅读全文...

22 Oct

分享:孟岩的《理解矩阵》一文

数学演算

数学演算

之前已经提到我要自学相对论和量子力学。作为现代物理的两大支柱,所用的数学也是很“现代”的,不能总是用高中那套简单的模式来计算,所以线性代数是我要熟悉的一门课程之一。现在大一还没开设线性代数课程,但是我所持的观点是:“任何东西只要你需要它,你就应该去学,而且能够学会。”其实我初三暑假的时候就开始接触了线性代数,我看的那本教材,跟国内其他线性代数教材一样,采用了一种只要求记忆和计算的方式来教授,先讲从线性方程组引出行列式,再到矩阵。我那时也在背诵,知道了了行列式怎么算的,行列式可以用来解方程组,矩阵是怎么相乘的等等。但我完全不知道为什么,我甚至不懂为什么这门课程叫“线性代数”。(当然,也有可能是那时的数学水平不够)国外很多教程都讲的很好,很规范地教,但是对于国内像我这样平庸的学生又显得过于专业。我一直期待有这样的一个平衡点,可惜一直没有找到,所以只能从各种渠道摸索。

点击阅读全文...

29 Oct

《新理解矩阵1》:矩阵是什么?

前边我承诺过会写一些关于自己对矩阵的理解。其实孟岩在《理解矩阵》这三篇文章中,已经用一种很直观的方法告诉了我们有关矩阵以及线性代数的一些性质和思想。而我对矩阵的理解,大多数也是来源于他的文章。当然,为了更好地理解线性代数,我还阅读了很多相关书籍,以求得到一种符合直觉的理解方式。孟岩的blog已经很久没有更新了,在此谨引用他的标题,来叙述我对矩阵的理解。

当然,我不打算追求那些空间、算子那些高抽象性的问题,我只是想发表一下自己对线性代数中一些常用工具的看法,比如说矩阵、行列式等。同时,文章命名为“理解矩阵”,也就是说这不是矩阵入门教程,而是与已经有一定的线性代数基础的读者一起探讨关于矩阵的其他理解方式,仅此而已。我估计基本上学过线性代数的读者都能够读懂这篇文章。

首先,我们不禁要追溯一个本源问题:矩阵是什么?

点击阅读全文...

31 Oct

《新理解矩阵2》:矩阵是什么?

上一篇文章中我从纯代数运算的角度来讲述了我对矩阵的一个理解,可以看到,我们赋予了矩阵相应的运算法则,它就在代数、分析等领域显示出了巨大作用。但是纯粹的代数是不足够的,要想更加完美,最好是找到相应的几何对象能够与之对应,只有这样,我们才能够直观地理解它,以达到得心应手的效果。

几何理解

我假设读者已经看过孟岩的《理解矩阵》三篇文章,所以更多的细节我就不重复了。我们知道,矩阵A

$$\begin{pmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{pmatrix}$$

事实上由两个向量$[a_{11},a_{21}]^T$和$[a_{12},a_{22}]^T$(这里的向量都是列向量)组成,它描述了一个平面(仿射)坐标系。换句话说,这两个向量其实是这个坐标系的两个基,而运算$y=Ax$则是告诉我们,在$A$这个坐标系下的x向量,在$I$坐标系下是怎样的。这里的$I$坐标系就是我们最常用的直角坐标系,也就是说,任何向量(包括矩阵里边的向量),只要它前面没有矩阵作用于它,那么它都是在直角坐标系下度量出来的。

点击阅读全文...

4 Nov

《新理解矩阵3》:行列式的点滴

本文的最新版本位于:http://kexue.fm/archives/2208/

亲爱的读者朋友们,科学空间版的理解矩阵已经来到了BoJone认为是最激动人心的部分了,那就是关于行列式的叙述。这部分内容没有在孟岩的文章中被谈及到,是我自己结合了一些书籍和网络资源而得出的一些看法。其中最主要的书籍是《数学桥》,而追本溯源,促进我研究这方面的内容的是matrix67的那篇《教材应该怎么写》。本文包含了相当多的直观理解内容,在我看来,这部分内容也许不是正统的观点,但是至少在某种程度上能够促进我们对线性代数的理解。

大多数线性代数引入行列式的方式都是通过讲解线性方程组的,这种方式能够让学生很快地掌握它的计算,以及给出了一个最实际的应用(就是解方程组啦)。但是这很容易让读者走进一个误区,让他们认为线性代数就是研究解方程组的。这样并不能让读者真正理解到它的本质,而只有当我们对它有了一个直观熟练的感觉,我们才能很好地运用它。

行列式的出现其实是为了判断一个矩阵是否可逆的,它通过某些方式构造出一个“相对简单”的函数来达到这个目的,这个函数就是矩阵的行列式。让我们来反思一下,矩阵可逆意味着什么呢?之前已经提到过,矩阵是从一个点到另外一个点的变换,那么逆矩阵很显然就是为了把它变换回来。我们还说过,“运动是相对的”,点的变换又可以用坐标系的变换来实现。但是,按照我们的直觉,不同的坐标系除了有那些运算上的复杂度不同(比如一般的仿射坐标系计算点积比直角坐标系复杂)之外,不应该有其他的不同了,用物理的语言说,就是一切坐标系都是平权的。那么给出一个坐标系,可以自然地变换到另外一个坐标系,也可以自然地将它变换回来。既然矩阵是这种坐标系的一个描述,那么矩阵不可逆的唯一可能性就是:

这个$n$阶矩阵的$n$个列向量根本就构不成一个$n$维空间的坐标系。

点击阅读全文...

6 Nov

王骁威:勇敢的追梦者

破解数学猜想

王骁威

王骁威

今天在看《广州日报》时,偶然发现了一个不曾听闻的名字——王骁威。

他,跟我一样是一个90后,是韶关学院的大四学生,而现在,他多了一点名头:“仅用1表示数问题中的素数猜想”这一难题的破解者。

“仅用1表示数问题中的素数猜想”出现在加拿大数学家Richard K·Guy的著作《数论中未解决的问题》中,是上世纪50年代,加拿大数学家Richard K·Guy提出一个数论猜想:对于给定的素数p,$f(p)=f(p-1)+1$是否能成立。其中,“仅用1表示数”指的是只用1通过加法和乘法以及括号来表示自然数,对于给定的自然数n,用1来表示时,1的最少个数记为$f(n)$。据说在之前就有诸多数学家论证过,在3亿之前的素数里,上述猜想是成立的。

但是王骁威通过举出反例证否了这个命题,他指出p=353942783时这个公式并不成立。他是经过四个月的钻研,王骁威运用集合论的运算、分析、优化,才成功发现这个猜想的反例的。发现反例之后,王骁威陷入兴奋,把整理成的报告寄给国内几家杂志社,结果却令他失望,几家杂志社对他的论文均不感兴趣。“我也怀疑过自己的努力是否值得,但对数学的强烈兴趣让我坚持下来。”王骁威说自己将论文译成英文,英文名为《A counterexample to the prime conjecture of expressing numbers using just ones》(中文名为《仅用1表示数中素数猜想的一个反例》),投往全球最权威的数论杂志———美国艾斯维尔出版社的《Journal of Number Theory》(数论杂志),国外专家的青睐终于让他收获成功的喜悦,论文发表在杂志第133期(明年二月)上。数学大师丘成桐也通过邮件与王骁威交流,并对他表示肯定。

点击阅读全文...

11 Nov

《新理解矩阵4》:相似矩阵的那些事儿

这篇文章估计是这个系列最后一篇了,也许以后会继续谈到线性代数,但是将会独立开来讲述。本文主要讲的是相似矩阵的一些事情,本文的观点很是粗糙,自己感觉都有点模糊,因此请读者细细阅读。在孟岩的文章里头,它对矩阵及其相似有了一个非常精彩的描述:

“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”

同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。

点击阅读全文...

16 Nov

天体力学巨匠——拉普拉斯

本文其实好几个月前就已经写好了,讲的是我最感兴趣的天体力学领域的故事,已经发表在2012年11月的《天文爱好者》上。

天体力学巨匠——拉普拉斯

天体力学巨匠——拉普拉斯

作为一本天文科普杂志,《天文爱好者》着眼于普及天文,内容偏向于有趣的天体物理等,比较少涉及到天体力学。事实上,在天文发展史中,天体力学——研究天体纯粹在万有引力作用下演化的科学——占据了相当重要的地位。过去,天文就被划分为天体力学、天体物理以及天体测量学三个大块。只是在近现代,由于电子计算机的飞速发展,天体力学的多数问题都交给了计算机数值计算解决,因此这一领域逐渐淡出了人们视野。不过,回味当初那段天体力学史,依然让我们觉得激动人心。

首先引入“天体力学(Celestial mechanics)”这一术语的是法国著名数学家、天文巨匠拉普拉斯。他的全名为皮埃尔?西蒙?拉普拉斯(Pierre?Simon marquis de Laplace),因研究太阳系稳定性的动力学问题被誉为法国的牛顿和天体力学之父。他和生活在同一时代的法国著名数学家拉格朗日以及勒让德(Adrien-Marie Legendre)并称为“三L”。

神秘的少年时期

由于1925年的一场大火,很多拉普拉斯的生活细节资料都丢失了。根据W. W. Rouse Ball的说法,他可能是一个普通农民或农场工人的儿子,1749年3月23日出生于诺曼底卡尔瓦多斯省的伯蒙特恩奥格。少年时期,拉普拉斯凭借着自己的才能和热情,在富人邻居的帮助下完成了学业。他父亲希望这能使他将来以宗教为业,16岁时,他被送往卡昂大学读神学。但他很快在数学上显露头角。

点击阅读全文...