BiGAN-QP:简单清晰的编码&生成模型
By 苏剑林 | 2018-12-10 | 67339位读者 | 引用前不久笔者通过直接在对偶空间中分析的思路,提出了一个称为GAN-QP的对抗模型框架,它的特点是可以从理论上证明既不会梯度消失,又不需要L约束,使得生成模型的搭建和训练都得到简化。
GAN-QP是一个对抗框架,所以理论上原来所有的GAN任务都可以往上面试试。前面《不用L约束又不会梯度消失的GAN,了解一下?》一文中我们只尝试了标准的随机生成任务,而这篇文章中我们尝试既有生成器、又有编码器的情况:BiGAN-QP。
BiGAN与BiGAN-QP
注意这是BiGAN,不是前段时间很火的BigGAN,BiGAN是双向GAN(Bidirectional GAN),提出于《Adversarial feature learning》一文,同期还有一篇非常相似的文章叫做《Adversarially Learned Inference》,提出了叫做ALI的模型,跟BiGAN差不多。总的来说,它们都是往普通的GAN模型中加入了编码器,使得模型既能够具有普通GAN的随机生成功能,又具有编码器的功能,可以用来提取有效的特征。把GAN-QP这种对抗模式用到BiGAN中,就得到了BiGAN-QP。
话不多说,先来上效果图(左边是原图,右边是重构):
基于CNN和序列标注的对联机器人
By 苏剑林 | 2019-01-14 | 44378位读者 | 引用缘起
前几天在量子位公众号上看到了《这个脑洞清奇的对联AI,大家都玩疯了》一文,觉得挺有意思,难得的是作者还整理并公开了数据集,所以决定自己尝试一下。
动手
“对对联”,我们可以看成是一个句子生成任务,可以用seq2seq完成,跟笔者之前写的《玩转Keras之seq2seq自动生成标题》一样,稍微修改一下输入即可。上面提到的文章所用的方法也是seq2seq,可见这算是标准做法了。
能量视角下的GAN模型(二):GAN=“分析”+“采样”
By 苏剑林 | 2019-02-15 | 134798位读者 | 引用在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。
上一篇文章里,我们给出了一个直白而用力的能量图景,这个图景可以让我们轻松理解GAN的很多内容,换句话说,通俗的解释已经能让我们完成大部分的理解了,并且把最终的结论都已经写了出来。在这篇文章中,我们继续从能量的视角理解GAN,这一次,我们争取把前面简单直白的描述,用相对严密的数学语言推导一遍。
跟第一篇文章一样,对于笔者来说,这个推导过程依然直接受启发于Bengio团队的新作《Maximum Entropy Generators for Energy-Based Models》。
原作者的开源实现:https://github.com/ritheshkumar95/energy_based_generative_models
本文的大致内容如下:
1、推导了能量分布下的正负相对抗的更新公式;
2、比较了理论分析与实验采样的区别,而将两者结合便得到了GAN框架;
3、导出了生成器的补充loss,理论上可以防止mode collapse;
4、简单提及了基于能量函数的MCMC采样。
不用L约束又不会梯度消失的GAN,了解一下?
By 苏剑林 | 2018-11-20 | 174107位读者 | 引用不知道从什么时候开始,我发现我也掉到了GAN的大坑里边了,唉,争取早日能跳出来...
这篇博客介绍的是我最近提交到arxiv的一个关于GAN的新框架,里边主要介绍了一种对概率散度的新理解,并且基于这种理解推导出了一个新的GAN。整篇文章比较偏理论,对这个GAN的相关性质都做了完整的论证,自认为是一个理论完备的结果。
文章链接:https://papers.cool/arxiv/1811.07296
先摆结论:
1、论文提供了一种分析和构造概率散度的直接思路,从而简化了构建新GAN框架的过程。
2、推导出了一个称为GAN-QP的GAN框架$\eqref{eq:gan-gp-gd}$,这个GAN不需要像WGAN那样的L约束,又不会有SGAN的梯度消失问题,实验表明它至少有不逊色于、甚至优于WGAN的表现。
论文的实验最大做到了512x512的人脸生成(CelebA HQ),充分表明了模型的有效性(效果不算完美,但是模型特别简单)。有兴趣的朋友,欢迎继续阅读下去。
从变分编码、信息瓶颈到正态分布:论遗忘的重要性
By 苏剑林 | 2018-11-27 | 161626位读者 | 引用这是一篇“散文”,我们来谈一下有着千丝万缕联系的三个东西:变分自编码器、信息瓶颈、正态分布。
众所周知,变分自编码器是一个很经典的生成模型,但实际上它有着超越生成模型的含义;而对于信息瓶颈,大家也许相对陌生一些,然而事实上信息瓶颈在去年也热闹了一阵子;至于正态分布,那就不用说了,它几乎跟所有机器学习领域都有或多或少的联系。
那么,当它们三个碰撞在一块时,又有什么样的故事可说呢?它们跟“遗忘”又有什么关系呢?
变分自编码器
在本博客你可以搜索到若干几篇介绍VAE的文章。下面简单回顾一下。
理论形式回顾
简单来说,VAE的优化目标是:
\begin{equation}KL(\tilde{p}(x)p(z|x)\Vert q(z)q(x|z))=\iint \tilde{p}(x)p(z|x)\log \frac{\tilde{p}(x)p(z|x)}{q(x|z)q(z)} dzdx\end{equation}
其中$q(z)$是标准正态分布,$p(z|x),q(x|z)$是条件正态分布,分别对应编码器、解码器。具体细节可以参考《变分自编码器(二):从贝叶斯观点出发》。
从动力学角度看优化算法(三):一个更整体的视角
By 苏剑林 | 2019-01-08 | 60740位读者 | 引用能量视角下的GAN模型(一):GAN=“挖坑”+“跳坑”
By 苏剑林 | 2019-01-30 | 98886位读者 | 引用在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。
本视角直接受启发于Benjio团队的新作《Maximum Entropy Generators for Energy-Based Models》,这篇文章前几天出现在arxiv上。当然,能量模型与GAN的联系由来已久,并不是这篇文章的独创,只不过这篇文章做得仔细和完善一些。另外本文还补充了自己的一些理解和思考上去,力求更为易懂和完整。
作为第一篇文章,我们先来给出一个直白的类比推导:GAN实际上就是一场前仆后继(前挖后跳?)的“挖坑”与“跳坑”之旅~
总的来说,本文的大致内容如下:
1、给出了GAN/WGAN的清晰直观的能量图像;
2、讨论了判别器(能量函数)的训练情况和策略;
3、指出了梯度惩罚一个非常漂亮而直观的能量解释;
4、讨论了GAN中优化器的选择问题。
从Wasserstein距离、对偶理论到WGAN
By 苏剑林 | 2019-01-20 | 218467位读者 | 引用2017年的时候笔者曾写过博文《互怼的艺术:从零直达WGAN-GP》,从一个相对通俗的角度来介绍了WGAN,在那篇文章中,WGAN更像是一个天马行空的结果,而实际上跟Wasserstein距离没有多大关系。
在本篇文章中,我们再从更数学化的视角来讨论一下WGAN。当然,本文并不是纯粹地讨论GAN,而主要侧重于Wasserstein距离及其对偶理论的理解。本文受启发于著名的国外博文《Wasserstein GAN and the Kantorovich-Rubinstein Duality》,内容跟它大体上相同,但是删除了一些冗余的部分,对不够充分或者含糊不清的地方作了补充。不管怎样,在此先对前辈及前辈的文章表示致敬。
(注:完整理解本文,应该需要多元微积分、概率论以及线性代数等基础知识。还有,本文确实长,数学公式确实多,但是,真的不复杂、不难懂,大家不要看到公式就吓怕了~)
最近评论