从JL引理看熵不变性Attention
By 苏剑林 | 2023-04-10 | 30469位读者 | 引用在《从熵不变性看Attention的Scale操作》、《熵不变性Softmax的一个快速推导》中笔者提出了熵不变性Softmax,简单来说就是往Softmax之前的Attention矩阵多乘上一个$\log n$,理论上有助于增强长度外推性,其中$n$是序列长度。$\log n$这个因子让笔者联系到了JL引理(Johnson-Lindenstrauss引理),因为JL引理告诉我们编码$n$个向量只需要$\mathcal{O}(\log n)$的维度就行了,大家都是$\log n$,这两者有没有什么关联呢?
熵不变性
我们知道,熵是不确定性的度量,用在注意力机制中,我们将它作为“集中注意力的程度”。所谓熵不变性,指的是不管序列长度$n$是多少,我们都要将注意力集中在关键的几个token上,而不要太过分散。为此,我们提出的熵不变性Attention形式为
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{\log_{512} n}{\sqrt{d}}QK^{\top}\right)V\label{eq:core}\end{equation}
当生成模型肆虐:互联网将有“疯牛病”之忧?
By 苏剑林 | 2023-07-14 | 49862位读者 | 引用众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?
近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文一起学习这篇论文,探讨其可能带来的影响。
Transformer升级之路:14、当HWFA遇见ReRoPE
By 苏剑林 | 2023-08-24 | 31326位读者 | 引用在上一篇文章《Transformer升级之路:13、逆用Leaky ReRoPE》中,笔者尝试通过在训练阶段逆用Leaky ReRoPE的思路,使得推理阶段的位置编码变为正常的RoPE,从而在达到长度外推的同时解决ReRoPE推理变慢的缺点。遗憾的是,从实验结果来看,“Leaky ReRoPE → RoPE”的效果并不如“RoPE → ReRoPE/Leaky ReRoPE”,因此这个问题尚未完全解决。
此时,笔者想到此前在《Transformer升级之路:9、一种全局长度外推的新思路》提出的HWFA本身就具有一定的长度外推能力,如果跟ReRoPE“强强联合”,是否会有更好的效果?更关键是,HWFA的加入可以大幅度降低推理成本,从而弥补ReRoPE的不足!
温故
首先,“例行公事”地回顾一下HWFA。HWFA(Hybird Window-Full Attention)并非一个具体的模型,而是一种Attention的组合方式,能够在基本保持效果不变的前提下,增强Attention模型的长度外推能力,同时还能降低训练和推理成本。
随机分词再探:从Viterbi Sampling到完美采样算法
By 苏剑林 | 2023-10-16 | 33620位读者 | 引用在文章《随机分词浅探:从Viterbi Decoding到Viterbi Sampling》中,笔者提出了一种名为“Viterbi Sampling”的随机分词算法,它只是在求最优解的Viterbi Decoding基础上进行小修改,保留了Viterbi算法的简单快速的特点,相比于已有的Subword Regularization明显更加高效。不过,知乎上的读者 @鶴舞 指出,当前的采样算法可能会在多次二选一“稀释”了部分方案的出现概率,直接后果是原本分数最高的切分并不是以最高概率出现。
经过仔细思考后,笔者发现相应的问题确实存在,当时为了尽快得到一种新的采样算法,在细节上的思考和处理确实比较粗糙。为此,本文将进一步完善Viterbi Sampling算法,并证明完善后的算法在效果上可以跟Subword Regularization等价的。
问题分析
首先,我们来看一下评论原话:
Transformer升级之路:16、“复盘”长度外推技术
By 苏剑林 | 2024-01-26 | 72764位读者 | 引用回过头来看,才发现从第7篇《Transformer升级之路:7、长度外推性与局部注意力》开始,“Transformer升级之路”这个系列就跟长度外推“杠”上了,接连9篇文章(不算本文)都是围绕长度外推展开的。如今,距离第7篇文章刚好是一年多一点,在这一年间,开源社区关于长度外推的研究有了显著进展,笔者也逐渐有了一些自己的理解,比如其实这个问题远不像一开始想象那么简单,以往很多基于局部注意力的工作也不总是有效,这暗示着很多旧的分析工作并没触及问题的核心。
在这篇文章中,笔者尝试结合自己的发现和认识,去“复盘”一下主流的长度外推结果,并试图从中发现免训练长度外推的关键之处。
问题定义
顾名思义,免训练长度外推,就是不需要用长序列数据进行额外的训练,只用短序列语料对模型进行训练,就可以得到一个能够处理和预测长序列的模型,即“Train Short, Test Long”。那么如何判断一个模型能否用于长序列呢?最基本的指标就是模型的长序列Loss或者PPL不会爆炸,更加符合实践的评测则是输入足够长的Context,让模型去预测答案,然后跟真实答案做对比,算BLEU、ROUGE等,LongBench就是就属于这类榜单。
Cool Papers更新:简单搭建了一个站内检索系统
By 苏剑林 | 2024-05-07 | 40138位读者 | 引用自从《更便捷的Cool Papers打开方式:Chrome重定向扩展》之后,Cool Papers有两次比较大的变化,一次是引入了venue分支,逐步收录了一些会议历年的论文集,如ICLR、ICML等,这部分是动态人工扩充的,欢迎有心仪的会议的读者提更多需求;另一次就是本文的主题,前天新增加的站内检索功能。
本文将简单介绍一下新增功能,并对搭建站内检索系统的过程做个基本总结。
简介
在Cool Papers的首页,我们看到搜索入口:
生成扩散模型漫谈(二十四):少走捷径,更快到达
By 苏剑林 | 2024-04-23 | 30795位读者 | 引用如何减少采样步数同时保证生成质量,是扩散模型应用层面的一个关键问题。其中,《生成扩散模型漫谈(四):DDIM = 高观点DDPM》介绍的DDIM可谓是加速采样的第一次尝试。后来,《生成扩散模型漫谈(五):一般框架之SDE篇》、《生成扩散模型漫谈(五):一般框架之ODE篇》等所介绍的工作将扩散模型与SDE、ODE联系了起来,于是相应的数值积分技术也被直接用于扩散模型的采样加速,其中又以相对简单的ODE加速技术最为丰富,我们在《生成扩散模型漫谈(二十一):中值定理加速ODE采样》也介绍过一例。
这篇文章我们介绍另一个特别简单有效的加速技巧——Skip Tuning,出自论文《The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling》,准确来说它是配合已有的加速技巧使用,来一步提高采样质量,这就意味着在保持相同采样质量的情况下,它可以进一步压缩采样步数,从而实现加速。
低秩近似之路(二):SVD
By 苏剑林 | 2024-10-01 | 16467位读者 | 引用上一篇文章中我们介绍了“伪逆”,它关系到给定矩阵$\boldsymbol{M}$和$\boldsymbol{A}$(或$\boldsymbol{B}$)时优化目标$\Vert \boldsymbol{A}\boldsymbol{B} - \boldsymbol{M}\Vert_F^2$的最优解。这篇文章我们来关注$\boldsymbol{A},\boldsymbol{B}$都不给出时的最优解,即
\begin{equation}\mathop{\text{argmin}}_{\boldsymbol{A},\boldsymbol{B}}\Vert \boldsymbol{A}\boldsymbol{B} - \boldsymbol{M}\Vert_F^2\label{eq:loss-ab}\end{equation}
其中$\boldsymbol{A}\in\mathbb{R}^{n\times r}, \boldsymbol{B}\in\mathbb{R}^{r\times m}, \boldsymbol{M}\in\mathbb{R}^{n\times m},r < \min(n,m)$。说白了,这就是要寻找矩阵$\boldsymbol{M}$的“最优$r$秩近似(秩不超过$r$的最优近似)”。而要解决这个问题,就需要请出大名鼎鼎的“SVD(奇异值分解)”了。虽然本系列把伪逆作为开篇,但它的“名声”远不如SVD,听过甚至用过SVD但没听说过伪逆的应该大有人在,包括笔者也是先了解SVD后才看到伪逆。
接下来,我们将围绕着矩阵的最优低秩近似来展开介绍SVD。
结论初探
对于任意矩阵$\boldsymbol{M}\in\mathbb{R}^{n\times m}$,都可以找到如下形式的奇异值分解(SVD,Singular Value Decomposition):
\begin{equation}\boldsymbol{M} = \boldsymbol{U}\boldsymbol{\Sigma} \boldsymbol{V}^{\top}\end{equation}
最近评论