两个惊艳的python库:tqdm和retry
By 苏剑林 | 2016-08-13 | 66327位读者 | 引用Python基本是我目前工作、计算、数据挖掘的唯一编程语言(除了符号计算用Mathematica外)。当然,基本的Python功能并不是很强大,但它胜在有巨量的第三方扩展库。在选用Python的第三方库时,我都会经过仔细考虑,希望能挑选出最简单的、最直观的一个(因为本人比较笨,太复杂用不了)。在数据处理方面,我用得最多的是Numpy和Pandas,这两个绝对称得上王者级别的库,当然不能不提的是Scipy,但我很少直接用它,一般会通过Pandas间接调用了;可视化方面不用说是Matplotlib了;在建模方面,我会用Keras,直接上深度学习模型,Keras已经成为相当流行的深度学习框架了,如果做文本挖掘,通常还会用到jieba(分词)、Gensim(主题建模,包含了诸如word2vec之类的模型),机器学习库还有流行的Scikit Learn,但我很少用;网络方面,写爬虫我用requests,这是个人性化的网络库,如果写网站,我会用bottle,这是个单文件版的迷你框架,一切由自己定义,当然,我也不会去写什么大型网站,我就写一个简单的的接口那样而已;最后如果要并行的话,一般直接用multiprocessing。
不过,以上都不是本文要推荐的,本文要推荐的是两个可以渗透到日常写代码的库,它实现了我们平时很多时候都需要的功能,但是不用增加什么代码,绝对让人眼前一亮。
【中文分词系列】 4. 基于双向LSTM的seq2seq字标注
By 苏剑林 | 2016-08-22 | 463781位读者 | 引用关于字标注法
上一篇文章谈到了分词的字标注法。要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了。在我看来,字标注法有效有两个主要的原因,第一个原因是它将分词问题变成了一个序列标注问题,而且这个标注是对齐的,也就是输入的字跟输出的标签是一一对应的,这在序列标注中是一个比较成熟的问题;第二个原因是这个标注法实际上已经是一个总结语义规律的过程,以4tag标注为为例,我们知道,“李”字是常用的姓氏,一半作为多字词(人名)的首字,即标记为b;而“想”由于“理想”之类的词语,也有比较高的比例标记为e,这样一来,要是“李想”两字放在一起时,即便原来词表没有“李想”一词,我们也能正确输出be,也就是识别出“李想”为一个词,也正是因为这个原因,即便是常被视为最不精确的HMM模型也能起到不错的效果。
关于标注,还有一个值得讨论的内容,就是标注的数目。常用的是4tag,事实上还有6tag和2tag,而标记分词结果最简单的方法应该是2tag,即标记“切分/不切分”就够了,但效果不好。为什么反而更多数目的tag效果更好呢?因为更多的tag实际上更全面概括了语义规律。比如,用4tag标注,我们能总结出哪些字单字成词、哪些字经常用作开头、哪些字用作末尾,但仅仅用2tag,就只能总结出哪些字经常用作开头,从归纳的角度来看,是不够全面的。但6tag跟4tag比较呢?我觉得不一定更好,6tag的意思是还要总结出哪些字作第二字、第三字,但这个总结角度是不是对的?我觉得,似乎并没有哪些字固定用于第二字或者第三字的,这个规律的总结性比首字和末字的规律弱多了(不过从新词发现的角度来看,6tag更容易发现长词。)。
双向LSTM
【中文分词系列】 3. 字标注法与HMM模型
By 苏剑林 | 2016-08-19 | 84604位读者 | 引用在这篇文章中,我们暂停查词典方法的介绍,转而介绍字标注的方法。前面已经提到过,字标注是通过给句子中每个字打上标签的思路来进行分词,比如之前提到过的,通过4标签来进行标注(single,单字成词;begin,多字词的开头;middle,三字以上词语的中间部分;end,多字词的结尾。均只取第一个字母。),这样,“为人民服务”就可以标注为“sbebe”了。4标注不是唯一的标注方式,类似地还有6标注,理论上来说,标注越多会越精细,理论上来说效果也越好,但标注太多也可能存在样本不足的问题,一般常用的就是4标注和6标注。
值得一提的是,这种通过给每个字打标签、进而将问题转化为序列到序列的学习,不仅仅是一种分词方法,还是一种解决大量自然语言问题的思路,比如命名实体识别等任务,同样可以用标注的方法来做。回到分词来,通过字标注法来进行分词的模型有隐马尔科夫模型(HMM)、最大熵模型(ME)、条件随机场模型(CRF),它们在精度上都是递增的,据说目前公开评测中分词效果最好的是4标注的CRF。然而,在本文中,我们要讲解的是最不精确的HMM。因为在我看来,它并非一个特定的模型,而是解决一大类问题的通用思想,一种简化问题的学问。
这一切,还得从概率模型谈起。
【中文分词系列】 5. 基于语言模型的无监督分词
By 苏剑林 | 2016-09-12 | 149671位读者 | 引用迄今为止,前四篇文章已经介绍了分词的若干思路,其中有基于最大概率的查词典方法、基于HMM或LSTM的字标注方法等。这些都是已有的研究方法了,笔者所做的就只是总结工作而已。查词典方法和字标注各有各的好处,我一直在想,能不能给出一种只需要大规模语料来训练的无监督分词模型呢?也就是说,怎么切分,应该是由语料来决定的,跟语言本身没关系。说白了,只要足够多语料,就可以告诉我们怎么分词。
看上去很完美,可是怎么做到呢?《2.基于切分的新词发现》中提供了一种思路,但是不够彻底。那里居于切分的新词发现方法确实可以看成一种无监督分词思路,它就是用一个简单的凝固度来判断某处该不该切分。但从分词的角度来看,这样的分词系统未免太过粗糙了。因此,我一直想着怎么提高这个精度,前期得到了一些有意义的结果,但都没有得到一个完整的理论。而最近正好把这个思路补全了。因为没有查找到类似的工作,所以这算是笔者在分词方面的一点原创工作了。
语言模型
首先简单谈一下语言模型。
【理解黎曼几何】1. 一条几何之路
By 苏剑林 | 2016-10-14 | 81204位读者 | 引用一个月没更新了,这个月花了不少时间在黎曼几何的理解方面,有一些体会,与大家分享。记得当初孟岩写的《理解矩阵》,和笔者所写的《新理解矩阵》,读者反响都挺不错的,这次沿用了这个名称,称之为《理解黎曼几何》。
黎曼几何是研究内蕴几何的几何分支。通俗来讲,就是我们可能生活在弯曲的空间中,比如一只生活在二维球面的蚂蚁,作为生活在弯曲空间中的个体,我们并没有足够多的智慧去把我们的弯曲嵌入到更高维的空间中去研究,就好比蚂蚁只懂得在球面上爬,不能从“三维空间的曲面”这一观点来认识球面,因为球面就是它们的世界。因此,我们就有了内蕴几何,它告诉我们,即便是身处弯曲空间中,我们依旧能够测量长度、面积、体积等,我们依旧能够算微分、积分,甚至我们能够发现我们的空间是弯曲的!也就是说,身处球面的蚂蚁,只要有足够的智慧,它们就能发现曲面是弯曲的——跟哥伦布环球航行那样——它们朝着一个方向走,最终却回到了起点,这就可以断定它们自身所处的空间必然是弯曲的——这个发现不需要用到三维空间的知识。
【理解黎曼几何】3. 测地线
By 苏剑林 | 2016-10-15 | 56035位读者 | 引用测地线
黎曼度量应该是不难理解的,在微分几何的教材中,我们就已经学习过曲面的“第一基本形式”了,事实上两者是同样的东西,只不过看待问题的角度不同,微分几何是把曲面看成是三维空间中的二维子集,而黎曼几何则是从二维曲面本身内蕴地研究几何问题。
几何关心什么问题呢?事实上,几何关心的是与变换无关的“客观实体”(或者说是在变换之下不变的东西),这也是几何的定义。根据Klein提出的《埃尔朗根纲领》,几何就是研究在某种变换(群)下的不变性质的学科。如果把变换局限为刚性变换(平移、旋转、反射),那么就是欧式几何;如果变换为一般的线性变换,那就是仿射几何。而黎曼几何关心的是与一切坐标都无关的客观实体。比如说,我有一个向量,方向和大小都确定了,在直角坐标系是$(1, 1)$,在极坐标系是$(\sqrt{2}, \pi/4)$,虽然两个坐标系下的分量不同,但它们都是指代同一个向量。也就是说向量本身是客观存在的实体,跟所使用的坐标无关。从代数层面看,就是只要能够通过某种坐标变换相互得到的,我们就认为它们是同一个东西。
因此,在学习黎曼几何时,往“客观实体”方向思考,总是有益的。
有了度规,可以很自然地引入“测地线”这一实体。狭义来看,它就是两点间的最短线——是平直空间的直线段概念的推广(实际的测地线不一定是最短的,但我们先不纠结细节,而且这不妨碍我们理解它,因为测地线至少是局部最短的)。不难想到,只要两点确定了,那么不管使用什么坐标,两点间的最短线就已经确定了,因此这显然是一个客观实体。有一个简单的类比,就是不管怎么坐标变换,一个函数$f(x)$的图像极值点总是确定的——不管你变还是不变,它就在那儿,不偏不倚。
【外微分浅谈】1. 绪论与启发
By 苏剑林 | 2016-11-04 | 25939位读者 | 引用写在前面
在《理解黎曼几何》系列,笔者分享了一些黎曼几何的“几何”心得,同时遗留了一个问题:怎么真正地去算黎曼张量?MTW的《引力论》中提到了一种基于外微分的方法,可是我不熟悉外微分,遂学习了一番。确实,是《引力论》中快捷计算曲率张量的步骤让笔者决定深入了解外微分的。果然,可观的效益是第一推动力。
这系列文章主要分享一些外微分的学习心得,曾经过多次修改和完善,包含的内容很多,比如外积、活动标架、外微分及其在黎曼几何的一些应用等,最后包括一种计算曲率的有效方式。
符号说明:在本系列中,用粗体的字母表示向量、矩阵以及基底,用普通字母来表示标量,它有可能是一个标量函数,也有可能是向量的分量,如无说明,则用$n$表示空间(流形)的维度。本文中同样使用了爱因斯坦求和法则,即相同的上下指标表示$1\sim n$遍历求和,即$\alpha_{\mu}\beta^{\mu}=\sum_{\mu=1}^{n} \alpha_{\mu}\beta^{\mu}$,习惯上将下标写在前面,比如$\alpha_{\mu}\beta^{\mu}$事实上跟$\beta^{\mu}\alpha_{\mu}$等价,但习惯写成前者。常用的一些记号是:$\mu,\nu$表示分量指标,$x^{\mu}$表示点的坐标分量,$dx^{\mu}$表示切向量(微元)的分量,$\alpha,\beta,\omega$等希腊字母也常用来表示微分形式。符号的使用有重复的地方,但符号的意义基本都在符号出现的附近有说明,因此应该不至于混淆。
最后,就是笔者其实对外微分还不是特别有感觉,因此文章中可能出现谬误之处,请读者见谅并指出。本系列命名为“外微分浅谈”,不是谦虚,确实是很浅,认识得浅,说的也很浅~
【外微分浅谈】6. 微分几何
By 苏剑林 | 2016-11-07 | 45322位读者 | 引用终于开始谈到重点了,就是这部分内容促使我学习外微分的。用外微分可以方便地推导微分几何的一些内容,有时候还能方便计算。其主要根源在于:外微分本身在形式上是微分的推广,因此微分几何的东西能够使用外微分来描述并不出奇;然后,最重要的原因是,外微分把$dx^{\mu}$看成一组基,因此相当于在几何中引入了两组基,一组是本身的向量基(用张量的语言,就是逆变向量的基),这组基可以做对称的内积,另外一组基就是$dx^{\mu}$,这组基可以做反对称的外积。因此,当外微分引入几何时,微分几何就拥有了微分、积分、对称积、反对称积等各种“理想装备”,这就是外微分能够加速微分几何推导的主要原因。
标架的运动
前面已经得到
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{45} $$
最近评论